Please wait a minute...
 
材料工程  2014, Vol. 0 Issue (5): 73-77    DOI: 10.11868/j.issn.1001-4381.2014.05.013
  测试与表征 本期目录 | 过刊浏览 | 高级检索 |
双向玻纤织物复合材料双轴拉伸载荷下的力学行为
蔡登安, 周光明, 王新峰, 钱元, 刘伟先
南京航空航天大学 机械结构力学与控制国家重点实验室, 南京 210016
Mechanical Behavior of Bidirectional Glass Fiber Fabric Composites Subjected to Biaxial Tensile Loading
CAI Deng-an, ZHOU Guang-ming, WANG Xin-feng, QIAN Yuan, LIU Wei-xian
State Key Lab of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
全文: PDF(1596 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 为研究双向玻纤织物复合材料在复杂应力状态下的力学行为,设计双轴加载十字型试样,对其进行不同载荷比的双轴拉伸实验,对比分析了材料在双轴拉伸载荷下的拉伸模量、拉伸强度及失效模式。结果表明:双向玻纤织物复合材料单轴拉伸行为表现为后期非线性、脆性断裂,双轴拉伸载荷下非线性现象更为显著;双轴拉伸模量随载荷的增大而增加,双轴拉伸载荷对材料的拉伸模量具有一定的强化作用;材料的双轴拉伸强度存在双向弱化效应,等比例双轴拉伸时,双轴拉伸强度最低,仅为单轴强度的60.5%;试样破坏发生于中心实验区域,材料不同载荷比的破坏形式有所不同,分别主要表现为纤维断裂、基体失效和玻纤布分层。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蔡登安
周光明
王新峰
钱元
刘伟先
关键词 双向玻纤织物双轴拉伸力学行为失效模式    
Abstract:To study the behavior of bidirectional glass fiber fabric composite under complex stress states, biaxially loaded cruciform specimen was designed and a series of tests under biaxial tensile loading at different load ratios were implemented. Comparison and analysis were carried out for the biaxial tensile modulus, tensile strength and failure mode of the material. The result shows that the uniaxial tensile behavior of the composites exhibits nonlinear at the later period and brittle fracture, and the nonlinear phenomena under biaxial loading are more significant. The biaxial tensile modulus rises with the increase of loading. The biaxial stretch has strengthening effect on tensile modulus to a certain extent. However, the biaxial weakening effect of the material is remarkable, and the biaxial tensile strength of the material is only 60.5% of the uniaxial strength at equal proportion extension. Moreover, the failure occurs in the center of the test area. The failure modes of the material at different load ratios are slightly diverse, which respectively shows fiber breakage, matrix failure and fiber cloth delamination.
Key wordsbidirectional glass fiber fabric    biaxial tensile    mechanical behavior    failure mode
收稿日期: 2013-02-25     
1:  TB332  
作者简介: 蔡登安(1988—),男,博士研究生,主要研究方向为复合材料结构设计,联系地址:江苏省南京市御道街29号281信箱(210016),E-mail:cda@nuaa.edu.cn
引用本文:   
蔡登安, 周光明, 王新峰, 钱元, 刘伟先. 双向玻纤织物复合材料双轴拉伸载荷下的力学行为[J]. 材料工程, 2014, 0(5): 73-77.
CAI Deng-an, ZHOU Guang-ming, WANG Xin-feng, QIAN Yuan, LIU Wei-xian. Mechanical Behavior of Bidirectional Glass Fiber Fabric Composites Subjected to Biaxial Tensile Loading. Journal of Materials Engineering, 2014, 0(5): 73-77.
链接本文:  
http://jme.biam.ac.cn/jme/CN/10.11868/j.issn.1001-4381.2014.05.013      或      http://jme.biam.ac.cn/jme/CN/Y2014/V0/I5/73
[1] 杜善义.先进复合材料与航空航天[J].复合材料学报,2007,24(1):1-12.DU S Y. Advanced composite materials and aerospace engineering [J]. Acta Materiae Compositae Sinica, 2007, 24(1): 1-12.
[2] 刘代军,陈亚莉.先进树脂基复合材料在航空工业中的应用[J].材料工程,2008,(增刊1):194-198.LIU D J, CHEN Y L. Application of advanced polymer matrix composites in aviation industry[J]. Journal of Materials Engineering, 2008, (Suppl 1): 194-198.
[3] 沈观林,胡更开.复合材料力学[M].北京:清华大学出版社,2006.
[4] MAILY L, WANG S S. Recent development of planar cruciform experiment on biaxial tensile deformation and failure of unidirectional glass/epoxy composite[J]. Journal of Composite Materials, 2008, 42(13): 1359-1379.
[5] SMITS A, Van HEMELRIJCK D, PHILIPPIDIS T P, et al. Design of a cruciform specimen for biaxial testing of fibre reinforced composite laminates[J]. Composites Science and Technology, 2006, 66(7-8): 964-975.
[6] MAKRIS A, VANDENBERGH T, RAMAULT C, et al. Shape optimisation of a biaxially loaded cruciform specimen[J]. Polymer Testing, 2010, 29(2): 216-223.
[7] LAMKANFI E, Van PAEPEGEM W, DEGRIECK J, et al. Strain distribution in cruciform specimens subjected to biaxial loading conditions. Part 1: two-dimensional versus three-dimensional finite element model[J]. Polymer Testing, 2010, 29(1): 7-13.
[8] LAMKANFI E, Van PAEPEGEM W, DEGRIECK J, et al. Strain distribution in cruciform specimens subjected to biaxial loading conditions. Part 2: influence of geometrical discontinuities[J]. Polymer Testing, 2010, 29(1): 132-138.
[9] ANTONIOU A E, Van HEMELRIJCK D, PHILIPPIDIS T P. Failure prediction for a glass/epoxy cruciform specimen under static biaxial loading[J]. Composites Science and Technology, 2010, 70(8): 1232-1241.
[10] MORENO S M C, LPEZ CELA J J. Failure envelope under biaxial tensile loading for chopped glass-reinforced polyester composites [J]. Composites Science and Technology, 2011, 72(1): 91-96.
[11] 王颖晖,方岱宁.功能材料双轴拉伸十字板试件的优化设计[J].力学学报,2002,34(5):705-714. WANG Y H, FANG D N. Optimal design of biaxial tensile cruciform specimens for smart materials[J]. Acta Mechanica Sinica, 2002, 34(5): 705-714.
[12] 吴向东,万敏,周贤宾.十字形双向拉伸试验有限元模拟分析[J].塑性工程学报,2001,8(2):57-59. WU X D, WAN M, ZHOU X B. FEM simulation and analysis of cruciform biaxial tensile test[J]. Journal of Plasticity Engineering, 2001, 8(2): 57-59.
13 ] 任家陶,李冈陵,豆志武,等.双向拉伸实验的进展与钛板双向拉伸的强化研究[J].实验力学,2001,16(2):196-206. REN J T, LI G L, DOU Z W, et al. Biaxial tension test and the strengthening of titanium sheets under biaxial tension[J]. Journal of Experimental Mechanics, 2001, 16(2): 196-206.
[14] 陆晓华.双轴纤维增强复合材料强度准则研究与双向拉伸试验[D].南京:南京航空航天大学,2007.
[1] 张志强, 李国禄, 王海斗. 基于统计分析的等离子喷涂层接触疲劳寿命和失效模式[J]. 材料工程, 2015, 43(8): 77-83.
[2] 董慧民, 安学锋, 益小苏, 闫丽, 苏正涛, 包建文. 纤维增强聚合物基复合材料低速冲击研究进展[J]. 材料工程, 2015, 43(5): 89-100.
[3] 高禹, 王钊, 陆春, 包建文, 宋恩鹏, 董尚利. 高性能树脂基复合材料典型空天环境下动态力学行为研究现状[J]. 材料工程, 2015, 43(3): 106-112.
[4] 郭洪宝, 王波, 矫桂琼, 刘永胜. 2D-Cf/SiC复合材料缺口试件拉伸力学行为研究[J]. 材料工程, 2013, 0(5): 83-88.
[5] 张勇波, 傅惠民. 国产炭纤维CCF300与T300炭纤维复合材料剪切载荷下的失效模式研究[J]. 材料工程, 2012, 0(8): 55-59.
[6] 王韶云, 李国禄, 王海斗, 刘金海, 徐滨士, 朴钟宇. 微缺陷对热喷涂涂层接触疲劳性能的影响[J]. 材料工程, 2012, 0(2): 72-76.
[7] 郭峰, 李杰, 李志, 王俊丽, 古立新, 王瑞. 单轴拉伸下AerMet100钢中稀土夹杂物开裂过程的原位观察[J]. 材料工程, 2008, 0(12): 24-29.
[8] 卢雅琳, 黄维超, 江海涛, 李淼泉. 工艺参数对半固态Al-4Cu-Mg合金力学行为的影响[J]. 材料工程, 2005, 0(5): 11-14.
[9] 范宣华, 蔡力勋, 胡绍全, 李聪. Zr-4合金常规力学行为研究与低周疲劳断口分析[J]. 材料工程, 2005, 0(1): 37-40.
[10] 袁超, 郭建亭, 冀光. 一种低成本镍基铸造高温合金的高温力学行为[J]. 材料工程, 2004, 0(5): 12-15,39.
[11] 周元鑫, 夏源明. 应变率对Cf/Al金属基复合材料力学性能的影响[J]. 材料工程, 2000, 0(9): 3-6.
[12] 常凤莲, 王世栋, 王毓锐, 赵连城. Cu-Zn-Al-Mn-Ni-Ti合金的显微组织及力学行为 [J]. 材料工程, 1994, 0(4): 9-16.
[13] 吴学仁, 颜鸣皋. 力学行为研究在新材料发展中的作用——评第六届国际材料的力学行为会议[J]. 材料工程, 1992, 0(1): 2-5.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn