Please wait a minute...
 
材料工程  2014, Vol. 0 Issue (6): 18-21    DOI: 10.11868/j.issn.1001-4381.2014.06.004
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
Ti-Zr-Cu-Co-Sn-Si块体非晶合金的形成及生物腐蚀行为和力学性能
胡侨, 张敏, 李海飞, 尹恩怀, 逄淑杰, 张涛
北京航空航天大学 材料科学与工程学院, 北京 100191
Formation, Bio-corrosion Behavior and Mechanical Properties of Ti-Zr-Cu-Co-Sn-Si Bulk Metallic Glasses
HU Qiao, ZHANG Min, LI Hai-fei, YIN En-huai, PANG Shu-jie, ZHANG Tao
School of Materials Science and Engineering, Beihang University, Beijing 100191, China
全文: PDF(1079 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用铜模铸造法制备了不含高生物毒性元素Ni和Be及贵金属元素的生物医用型Ti87-xZr7.5CuxCo2.5Sn2Si1x=39,40,42,原子分数/%)块体非晶合金,并对其非晶形成能力、热稳定性、生物腐蚀行为及力学性能进行了研究。结果表明:该系非晶合金临界直径为2~3mm,并具有较高的热稳定性,其过冷液体温度区间为44~51K。Ti-Zr-Cu-Co-Sn-Si非晶合金在模拟人体体液环境中表现出高耐腐蚀性能,在37℃的磷酸盐缓冲溶液中发生自钝化,钝化电流密度低,且其开路电位和孔蚀电位随着Ti含量的增加而提高。该系非晶合金具有良好的力学性能,压缩断裂强度达2309MPa,弹性模量为92~100GPa。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡侨
张敏
李海飞
尹恩怀
逄淑杰
张涛
关键词 Ti基非晶合金生物腐蚀行为力学性能生物医用合金    
Abstract:Novel Ti87-xZr7.5CuxCo2.5Sn2Si1 (x=39,40,42, atom fraction/%) bulk metallic glasses without highly toxic elements Ni and Be as well as noble elements were synthesized by copper mold casting, and their glass-forming ability, thermal stability, bio-corrosion behavior and mechanical properties were studied. The results show that the Ti-Zr-Cu-Co-Sn-Si metallic glasses possess high glass-forming ability and thermal stability, evidenced by the critical diameters of 2-3 mm and large supercooled liquid region of 44-51K. The Ti-Zr-Cu-Co-Sn-Si metallic glasses exhibit high bio-corrosion resistance in phosphate buffered saline (PBS) at 37℃. They are spontaneously passivated with wide passive region and low passive current density of about 3×10-2A/m2. The corrosion resistance is enhanced with the increase in Ti content in the metallic glass. The Ti-based bulk metallic glasses possess high compressive fracture strength up to 2309MPa and low elastic modulus of 92-100GPa.
Key wordsTi-based metallic glass    bio-corrosion behavior    mechanical property    bio-medical alloy
收稿日期: 2012-10-17      出版日期: 2014-06-20
中图分类号:  TG139  
基金资助:国家自然科学基金(51161130526,51271008);北京市自然科学基金(2122033)
通讯作者: 逄淑杰(1970- ),女,教授,博士生导师,E-mail:pangshujie@buaa.edu.cn     E-mail: pangshujie@buaa.edu.cn
作者简介: 胡侨(1987- ),女,硕士研究生,主要从事非晶合金的形成与腐蚀行为方面的研究,联系地址:北京市海淀区学院路37号北京航空航天大学材料科学与工程学院(100191),E-mail:huqiao0603@126.com
引用本文:   
胡侨, 张敏, 李海飞, 尹恩怀, 逄淑杰, 张涛. Ti-Zr-Cu-Co-Sn-Si块体非晶合金的形成及生物腐蚀行为和力学性能[J]. 材料工程, 2014, 0(6): 18-21.
HU Qiao, ZHANG Min, LI Hai-fei, YIN En-huai, PANG Shu-jie, ZHANG Tao. Formation, Bio-corrosion Behavior and Mechanical Properties of Ti-Zr-Cu-Co-Sn-Si Bulk Metallic Glasses. Journal of Materials Engineering, 2014, 0(6): 18-21.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2014.06.004      或      http://jme.biam.ac.cn/CN/Y2014/V0/I6/18
[1] INOUE A. Stabilization of metallic supercooled liquid and bulk amorphous alloys[J]. Acta Materialia, 2000, 48(1): 279-306.
[2] 惠希东, 陈国良. 块体非晶合金[M]. 北京:化学工业出版社, 2007. 155-236.
[3] MORRISON M L, BUCHANAN R A, PEKER A, et al. Electrochemical behavior of a Ti-based bulk metallic glass[J]. Journal of Non-crystalline Solids, 2007, 353(22-23): 2115-2124.
[4] ZHANG T, INOUE A. Ti-based amorphous alloys with a large supercooled liquid region[J]. Materials Science and Engineering A, 2001, 304-306: 771-774.
[5] KIM Y C, KIM W T, KIM D H. A development of Ti-based bulk metallic glass[J]. Materials Science and Engineering A, 2004, 375-377: 127-135.
[6] OAK J J, LOUZGUINE-LUZGIN D V, INOUE A. Investigation of glass-forming ability, deformation and corrosion behavior of Ni-free Ti-based BMG alloys designed for application as dental implants[J]. Materials Science and Engineering C, 2009, 29(1): 322-327.
[7] QIN F X, WANG X M, INOUE A, et al. Corrosion behavior of Ti-based metallic glasses[J]. Materials Transactions, 2006, 47(8): 1934-1937.
[8] QIN F X, WADA K, YANG X J, et al. Bioactivity of a Ni-free Ti-based metallic glass[J]. Materials Transactions, 2010, 51(3): 529-534
[9] OAK J J, HWANG G W, PARK Y H, et al. Characterization of surface properties, osteoblast cell culture in vitro and processing with flow-viscosity of Ni-free Ti-based bulk metallic glass for biomaterials[J]. Journal of Biomechanical Science and Engineering, 2009, 4(3): 384-391.
[10] MEN H, PANG S J, INOUE A, et al. New Ti-based bulk metallic glasses with significant plasticity[J]. Materials Transactions, 2005, 46(10): 2218-2220.
[11] MA C L, SOEJIMA H, ISHIHARA S, et al. New Ti-based bulk glassy alloys with high glass-forming ability and superior mechanical properties[J]. Materials Transactions, 2004, 45(11): 3223-3227.
[12] HUANG Y J, SHEN J, SUN J F, et al. A new Ti-Zr-Hf-Cu-Ni-Si-Sn bulk amorphous alloy with high glass-forming ability[J]. Journal of Alloys and Compounds, 2007(1-2), 427: 171-175.
[13] GUO F Q, WANG H J, POON S J, et al. Ductile titanium-based glassy alloy ingots[J]. Applied Physics Letters, 2005, 86(9): 091907-1-091907-3.
[14] YIN E H, ZHANG M, PANG S J, et al. Formation of Ti-Zr-Cu-Ni-Sn-Si bulk metallic glasses with good plasticity[J]. Journal of Alloys and Compounds, 2010, 504S: S10-S13.
[15] XIA M X, MA C L, ZHENG H M, et al. Preparation and crystallization of Ti53Cu42Ni12Zr3Al7Si3B1 bulk metallic glass with wide supercooled liquid region[J]. Materials Science and Engineering A, 2005, 390(1-2): 372-375.
[16] ZHU S L, WANG X M, QIN F X, et al. A new Ti-based bulk glassy alloy with potential for biomedical application[J]. Materials Science and Engineering A, 2007, 459(1-2): 233-237.
[17] ZHU S L, WANG X M, INOUE A. Glass-forming ability and mechanical properties of Ti-based bulk glassy alloys with large diameters up to 1 cm[J]. Intermetallics, 2008, 16(8): 1031-1035.
[18] ZHANG T, LI R, PANG S J. Effect of similar elements on improving glass-forming ability of La-Ce-based alloys[J]. Journal of Alloys and Compounds, 2009, 483(1-2): 60-63.
[19] LI R, LIU F J, PANG S J, et al.The influence of similar element coexistence in (La-Ce)-Al-(Co-Cu) bulk metallic glasses[J]. Materials Transactions, 2007, 48(7): 1680-1683.
[20] ZHUO L C, PANG S J, WANG H, et al. Ductile bulk aluminum-based alloy with good glass-forming ability and high strength[J].China Physics Letters, 2009, 26(6): 066402-1-066402-3.
[21] 张丽冰. 新型钛基块体非晶态合金的形成及性能[D]. 北京:北京航空航天大学, 2006. 27-42.
[22] TAKEUCHI A, INOUE A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element[J]. Materials Transactions, 2005, 46(12): 2817-2829.
[23] SCULLY J R, GEBERT A, PAYER J H. Corrosion and related mechanical properties of bulk metallic glasses[J]. Journal of Materials Research, 2007, 22(2): 304-306.
[24] MORROSION M L, BUCHANAN R A, LEON R V, et al. The electrochemical evaluation of a Zr-based bulk metallic glass in a phosphate-buffered saline electrolyte[J]. Journal of Biomedical Materials Research A, 2005, 74(3): 430-438.
[1] 赵云松, 张迈, 郭小童, 郭媛媛, 赵昊, 刘砚飞, 姜华, 张剑, 骆宇时. 航空发动机涡轮叶片超温服役损伤的研究进展[J]. 材料工程, 2020, 48(9): 24-33.
[2] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[3] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[4] 唐大秀, 刘金云, 王玉欣, 尚杰, 刘钢, 刘宜伟, 张辉, 陈清明, 刘翔, 李润伟. 柔性阻变存储器材料研究进展[J]. 材料工程, 2020, 48(7): 81-92.
[5] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[6] 李和奇, 王晓民, 曾宏燕. 热处理对FeCrMnNiCox合金微观组织及力学性能的影响[J]. 材料工程, 2020, 48(6): 170-175.
[7] 李淑文, 赵孔银, 陈康, 李金刚, 赵磊, 王晓磊, 魏俊富. TiO2共混丝朊接枝聚丙烯腈过滤膜制备及性能研究[J]. 材料工程, 2020, 48(3): 47-52.
[8] 赵新龙, 金鑫, 丁成成, 俞娟, 王晓东, 黄培. 热处理时间对聚甲基丙烯酰亚胺(PMI)泡沫结构和性能的影响[J]. 材料工程, 2020, 48(3): 53-58.
[9] 叶寒, 黄俊强, 张坚强, 李聪聪, 刘勇. 纳米WC增强选区激光熔化AlSi10Mg显微组织与力学性能[J]. 材料工程, 2020, 48(3): 75-83.
[10] 姚小飞, 田伟, 李楠, 王萍, 吕煜坤. 铜导线表面热浸镀PbSn合金镀层的组织与性能[J]. 材料工程, 2020, 48(3): 148-154.
[11] 刘也川, 张松, 谭俊哲, 关锰, 陶邵佳, 张春华. 机械滚压对A473M钢疲劳性能的影响[J]. 材料工程, 2020, 48(3): 163-169.
[12] 李昊卿, 田玉晶, 赵而团, 郭红, 方晓英. S32750双相不锈钢相界与晶界特征对其力学性能和耐蚀性能的影响[J]. 材料工程, 2020, 48(2): 133-139.
[13] 钦兰云, 何晓娣, 李明东, 杨光, 高博文. 退火处理对激光沉积制造TC4钛合金组织及力学性能影响[J]. 材料工程, 2020, 48(2): 148-155.
[14] 刘天豪, 郭胜锋. 铁基块体非晶合金的形成规律与力学性能研究进展[J]. 材料工程, 2020, 48(11): 46-57.
[15] 唐鹏钧, 房立家, 杨斌, 陈冰清, 李沛勇, 张学军. 激光选区熔化AlSi7MgTi合金显微组织与性能[J]. 材料工程, 2020, 48(11): 116-123.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn