Please wait a minute...
 
材料工程  2014, Vol. 0 Issue (7): 22-27    DOI: 10.11868/j.issn.1001-4381.2014.07.005
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
紫铜在海洋微生物作用下的电化学腐蚀行为
陈海燕1, 林振龙1, 陈丕茂2, 秦传新2, 唐振朝2, 余景2
1. 广东工业大学 材料与能源学院, 广州 510006;
2. 中国水产科学研究院 南海水产研究所, 广州 510300
Electrochemical Corrosion Behavior of Copper in Marine Microbial Medium
CHEN Hai-yan1, LIN Zhen-long1, CHEN Pi-mao2, QIN Chuan-xin2, TANG Zhen-zhao2, YU Jing2
1. School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China;
2. South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
全文: PDF(2704 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用开路电位、电化学极化曲线、电化学阻抗谱(EIS)研究了紫铜在海水盐度和微生物影响下的腐蚀行为。结果表明,无菌介质条件下,随着介质盐度的增加,紫铜的开路电位负移,使得腐蚀倾向与腐蚀率变大。扫描电子显微镜(SEM)形貌分析表明在紫铜上附着的海洋微生物以杆状细菌为主,咸淡水中的细菌附着量比海水的大,导致紫铜在盐度不高的咸淡水耐蚀性能下降。EIS结果表明在海洋微生物作用下紫铜的交流阻抗模值减少,降低了紫铜的极化电阻和表面膜的电阻,从而加速了紫铜的腐蚀进程。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈海燕
林振龙
陈丕茂
秦传新
唐振朝
余景
关键词 紫铜微生物腐蚀电化学阻抗谱海水咸淡水    
Abstract:The effects of salinity and microbe on the corrosion behavior of copper were investigated by using open-circuit potential of electrode, polarization curves and electrochemical impedance spectroscopy (EIS). Results show that in the sterile medium, the pure copper has more opportunity to corrode with the increase of salinity, because of the moving of the open-circuit potential towards negative direction. Scanning electron microscopy (SEM) reveals that the microbe adhesions on the copper mainly pole shape bacteria. The speed of corrosion in estuary water further increases with the microbe adhesions on the copper are higher in estuary water than in seawater.EIS results reveal that the transfer resistance and passive film resistance decrease with bacteria in estuary water and seawater. It indicate that the adhesion of marine microorganism accelerate the corrosion progress of pure copper.
Key wordspure copper    microbiologically influenced corrosion    electrochemical impedance spectroscopy    seawater    estuary water
收稿日期: 2012-10-30     
1:  TG174.3  
基金资助:公益性行业(农业)科研专项经费项目(201003068);农业部南海渔业资源环境科学观测实验站开放课题(SSCS-201208)
通讯作者: 陈海燕(1974-)女,副教授,博士,研究方向为材料腐蚀与防护技术,联系地址:广州大学城外环西100号广东工业大学材料与能源学院(510006),E-mail:gdutchy1@163.com     E-mail: gdutchy1@163.com
引用本文:   
陈海燕, 林振龙, 陈丕茂, 秦传新, 唐振朝, 余景. 紫铜在海洋微生物作用下的电化学腐蚀行为[J]. 材料工程, 2014, 0(7): 22-27.
CHEN Hai-yan, LIN Zhen-long, CHEN Pi-mao, QIN Chuan-xin, TANG Zhen-zhao, YU Jing. Electrochemical Corrosion Behavior of Copper in Marine Microbial Medium. Journal of Materials Engineering, 2014, 0(7): 22-27.
链接本文:  
http://jme.biam.ac.cn/jme/CN/10.11868/j.issn.1001-4381.2014.07.005      或      http://jme.biam.ac.cn/jme/CN/Y2014/V0/I7/22
[1] NAKAYAMA S. Mechanistic study by electrochemical impedance spectroscopy on reduction of copper oxides in neutral solutions [J]. SEI Technical Review, 2009, 1343-4349:62-68.
[2] TSAI T H, WU Y F, YEN S C. A study of copper chemical mechanical polishing in urea-hydrogen peroxide slurry by electrochemical impedance spectroscopy [J]. Applied Surface Science, 2003, 214(1-4):120-135.
[3] 王宏智,陈君,周建奇,等. 紫铜海水管焊接部位在海水中的腐蚀特征[J]. 中国有色金属学报, 2006, 16(4): 645-650.WANG Hong-zhi, CHEN Jun, ZHOU Jian-qi, et al. Corrosion characteristics of welded joints of copper pipe in seawater [J]. The Chinese Journal of Nonferrous Metals, 2006, 16 (4): 645-650.
[4] CLAYTOR R .Investigation to the Susceptibility of Corrosion Resistant Alloys to Biocorrosion[M].USA: Naval Research Laboratory,2004:36-48.
[5] SZAKALOS P. Corrosion of copper by water [J]. Electrochemical and Solid-State Letters, 2007, 10(11): 63-67.
[6] SANDBERG J. Corrosion-induced copper runoff from naturally and pre-patinated copper in a marine environment [J]. Corrosion Science, 2006, 48(12): 4316-4338.
[7] 范工业.防止铜合金热交换器腐蚀的技术改进[J].全面腐蚀控制,2006,20(5):42-44.FAN Gong-ye.The technical improvement to prevent copper alloy heat exchanger corrosion[J].Total Corrosion Control,2006,20(5):42-44.
[8] 姜英,王卫国,郭红. 同步改善黄铜H68晶界腐蚀行为和力学性能[J].中国有色金属学报, 2011, 21(2): 377-383.JIANG Ying, WANG Wei-guo, GUO Hong. Improvements of intergranular corrosion resistance and mechanical properties of brass [J]. The Chinese Journal of Nonferrous Metals, 2011, 21 (2): 377-383.
[9] 段冶,李松梅,杜娟,等.Q235钢在假单胞菌和铁细菌混合作用下的腐蚀行为[J].物理化学学报,2010,26(12):3203-3211.DUAN Ye, LI Song-mei,DU Juan, et al. Corrosion behavior of Q235 steel in the presence of pseudomonas and iron bacteria [J].Acta Phys-Chim Sin, 2010,26(12):3203-3211.
[10] SHENG Xiao-xia. Evaluation of an organic corrosion inhibitor on abiotic corrosion and microbiologically influenced corrosion of mild steel [J]. Industrial and Engineering Chemistry Research, 2007, 46(22):7117-7125.
[11] LEE A K, BUEHLER M G, NEWMAN D K. Influence of a dual-species biofilm on the corrosion of mild steel[J].Corros Sci,2006,48:165-178.
[12] YUAN S J, PEHKONEN S O. Microbiologically influenced corrosion of 304 stainless steel by aerobic pseudomonas NCIMB2021 bacteria: AFM and XPS study[J].Collids and Surfaces B:Bionterfaces,2007,59(1):87-99.
[13] ABRAHAM G J, KAIN V, DEY G K. MIC failure of cupronickel condenser tube in fresh water application [J]. Engineering Failure Analysis, 2009, 16(3):934-943.
[14] 孙秋霞.材料腐蚀与防护[M].北京:冶金工业出版社,2001.34-59.
[15] 曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社,2002.7.
[16] IWONA B B, Corrosion of technical materials in the presence of biofilms-current understanding and state-of-the-art methods of study[J].Intern Biodeter Biodegrad, 2004,53:177-183.
[1] 刘栓, 孙虎元, 孙立娟, 张宁, 陈建敏. Galvalume镀层钢在青岛海域海水中的耐蚀性能[J]. 材料工程, 2015, 43(3): 42-47.
[2] 杜楠, 叶超, 田文明, 赵晴. 304不锈钢点蚀行为的电化学阻抗谱研究[J]. 材料工程, 2014, 0(6): 68-73.
[3] 骆晨, 蔡健平, 陈亚争, 刘明, 赵亮亮, 孙志华, 汤智慧, 陆峰. 外加应变对航空有机涂层防护性能的影响[J]. 材料工程, 2014, 0(5): 1-6.
[4] 刘栓, 孙虎元, 孙立娟, 范汇吉, 刘增文. 海水中Zn(OH)2对镀锌钢腐蚀行为的影响[J]. 材料工程, 2013, (8): 60-64.
[5] 宋秀霞, 张杰, 杨东方, 段继周. 海水微生物对Zn-Al-Cd牺牲阳极腐蚀性能的影响[J]. 材料工程, 2013, 0(1): 58-63.
[6] 于美, 董宇, 王瑞阳, 祁晋豫, 刘建华, 李松梅. 23Co14Ni12Cr3Mo超高强钢在模拟海水环境中的腐蚀行为[J]. 材料工程, 2012, 0(1): 42-50.
[7] 曹国良, 李国明, 陈珊, 常万顺, 陈学群. Cu对低合金钢耐海水腐蚀的影响[J]. 材料工程, 2011, 0(9): 62-67.
[8] 陈家才, 王旭东, 孙冬柏. 氯离子在有机涂层中的渗透及涂层失效过程的电化学阻抗谱研究[J]. 材料工程, 2011, 0(6): 52-57.
[9] 张杰, 刘奉令, 李伟华, 段继周, 翟慎宝, 侯保荣. 硫酸盐还原菌对海底泥中Al-Zn-In-Mg-Ti阳极的腐蚀影响[J]. 材料工程, 2011, 0(4): 43-48.
[10] 许乔瑜, 周巍. Zn-Ni-V热浸镀层组织及腐蚀电化学行为研究[J]. 材料工程, 2011, 0(2): 92-96.
[11] 聂向晖, 李晓刚, 杜翠薇, 沈庆红. Q235在不同含水量滨海盐土中腐蚀的电化学阻抗谱分析[J]. 材料工程, 2009, 0(6): 15-19.
[12] 孙建波, 柳伟, 路民旭. 塑性变形条件下16MnR钢的CO2腐蚀电化学行为[J]. 材料工程, 2009, 0(1): 59-63.
[13] 李松梅, 王彦卿, 刘建华, 梁馨. 枝孢霉菌对A3钢腐蚀的影响[J]. 材料工程, 2008, 0(7): 55-58.
[14] 姚颖悟, 姚素薇, 宋振兴. 电沉积Ni-W合金在NaCl溶液中的腐蚀行为[J]. 材料工程, 2006, 0(9): 42-44,56.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn