Please wait a minute...
 
材料工程  2014, Vol. 0 Issue (8): 51-54    DOI: 10.11868/j.issn.1001-4381.2014.08.010
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
雾化热分解-氧化五羰基铁制备磁性氧化铁纳米粒子
王新星1,2, 张宝林1,2, 王行展1,2, 冯凌云1,2
1. 桂林理工大学 广西有色金属及特色材料加工省部共建国家重点实验室培育基地, 广西 桂林 541004;
2. 桂林理工大学 材料科学与工程学院, 广西 桂林 541004
Magnetic Iron Oxide Nanoparticles Prepared by Spray Pyrolysis-oxidation of Iron Pentacarbonyl
WANG Xin-xing1,2, ZHANG Bao-lin1,2, WANG Xing-zhan1,2, FENG Ling-yun1,2
1. State Key Laboratory Breeding Base of Nonferrous Metals and Specific Materials Processing, Guilin University of Technology, Guilin 541004, Guangxi, China;
2. College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, Guangxi, China
全文: PDF(2010 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 通过雾化热分解-氧化五羰基铁(Fe(CO)5),在雾化液中添加三乙二醇(TREG)和三正辛基氧膦(TOPO),及在收集液中添加羧基化单甲醚聚乙二醇(MPEG-COOH)等有机修饰剂合成γ-Fe2O3纳米粒子。研究两段加热和单段加热对合成γ-Fe2O3纳米粒子的形貌、粒径、分散性的影响,同时分析温度对γ-Fe2O3纳米粒子结晶性、形貌及磁性能的影响。结果表明:合成的γ-Fe2O3纳米粒子结晶度随温度的升高而增加; MPEG-COOH已经修饰在γ-Fe2O3纳米粒子表面;在单段加热模式下温度为360,390,420℃和450℃时合成的γ-Fe2O3纳米粒子在300K下都具有超顺磁性,饱和磁化强度分别为30,37,41,71A·m2·kg-1;单段加热模式较两段加热模式合成的γ-Fe2O3纳米粒子分散性更好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王新星
张宝林
王行展
冯凌云
关键词 &gamma-Fe2O3雾化热分解两段加热单段加热磁性能    
Abstractγ-Fe2O3 nanoparticles were synthesized via spray pyrolysis-oxidation of iron pentacarbonyl (Fe(CO)5)containing triethylene glycol(TREG)and trioctylphosphine oxide(TOPO)in atomizing liquid, and containing carboxyl-monomethoxypoly(ethy1ene glycol)(MPEG-COOH)in collecting liquid. The effects of two-stage heating and single-stage heating on the morphologies, size and dispersing properties of γ-Fe2O3 nanoparticles were investigated. The effects of temperature on crystallinities,morphologies and magnetic properties of γ-Fe2O3 nanoparticles were analyzed. The results show that the crystallinities of the synthesized γ-Fe2O3 nanoparticles increase with the increasing of temperature. MPEG-COOH is modified on the surface of γ-Fe2O3 nanoparticles. In single-stage heating the γ-Fe2O3 nanoparticles synthesizing at 360, 390, 420℃ and 450℃ are superparamagnetic at 300K with saturation magnetization of 30, 37, 41, 71A·m2·kg-1, respectively. The dispersing properties of γ-Fe2O3 nanoparticles synthesizing in single-stage heating are better than those of γ-Fe2O3 nanoparticles synthesizing in two-stage heating.
Key wordsγ-Fe2O3    spray pyrolysis    two-stage heating    single-stage heating    magnetic property
收稿日期: 2012-03-12     
1:  TB383  
基金资助:国家自然科学基金资助项目(50962005,51162003)
通讯作者: 张宝林(1967-),男,博士,教授,从事生物纳米材料研究,联系地址:广西桂林市建干路12号桂林理工大学材料科学与工程学院(541004),E-mail:zhangbaolin@glut.edu.cn     E-mail: zhangbaolin@glut.edu.cn
引用本文:   
王新星, 张宝林, 王行展, 冯凌云. 雾化热分解-氧化五羰基铁制备磁性氧化铁纳米粒子[J]. 材料工程, 2014, 0(8): 51-54.
WANG Xin-xing, ZHANG Bao-lin, WANG Xing-zhan, FENG Ling-yun. Magnetic Iron Oxide Nanoparticles Prepared by Spray Pyrolysis-oxidation of Iron Pentacarbonyl. Journal of Materials Engineering, 2014, 0(8): 51-54.
链接本文:  
http://jme.biam.ac.cn/jme/CN/10.11868/j.issn.1001-4381.2014.08.010      或      http://jme.biam.ac.cn/jme/CN/Y2014/V0/I8/51
[1] CAO M S, WANG R, FANG X, et al. Preparing γ'-Fe4N ultrafine powder by twice-nitriding method[J]. Powder Technology,2001,115(1):96-98.
[2] CAO M S, LIU H T, CHEN Y J, et al. Synthesis process and growth mechanism of γ'-Fe4N nanoparticles by phase-transformation[J]. Science in China Series E-Technological Sciences,2003,46(1):104-112.
[3] CHEN Y J, CAO M S, TIAN Q, et al. A novel preparation and surface decorated approach for α-Fe nanoparticles by chemical vapor-liquid reaction at low temperature[J]. Materials Letters,2004,58(9):1481-1484.
[4] CHEN Y J, ZHU C L, WANG L J, et al. Synthesis and enhanced ethanol sensing characteristics of α-Fe2O3/SnO2 core-shell nanorods[J]. Nanotechnology,2009,20(4):045502.
[5] COROT C. Recent advances in iron oxide nanocrystal technology for medical imaging[J]. Advanced Drug Delivery Reviews,2006,58(14):1471-1504.
[6] WEISSLEDER R. Long-circulating iron oxides for MR imaging[J]. Advanced Drug Delivery Reviews,1995,16(2):321-324.
[7] TAN W, WANG K, HE X, et al. Bionanotechnology based on silica nanoparticles[J]. Medicinal Research Reviews,2004,24(5):621-638.
[8] GUPTA A K, GUPTA M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications[J]. Biomaterials,2005,26(18):3995-4021.
[9] LEE S J, JEONG J R, SHIN S C, et al. Magnetic enhancement of iron oxide nanoparticles encapsulated with poly (D, L-latide-co-glycolide)[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2005,255(1):19-25.
[10] NAKANISHI T, LIDA H, OAAKA T, et al. Preparation of iron oxide nanoparticles via successive reduction-oxidation in reverse micelles[J]. Chemistry Letters,2003,(12):1166-1167.
[11] NARASIMAN B R V, PRABHAKAR S, MANOHA P R, et al. Synthesis of gamma ferric oxide by direct thermal decomposition of ferrous carbonate[J]. Materials Letters,2002,52(4):295-300.
[12] ROCKENBERGER J, SCHER E C, ALIVISATOS A P, et al. A new nonhydrolytic single-precursor approach to surfactant-capped nanocrystals of transition metal oxides[J]. Journal of the American Chemical Society,1999,21(49):11595-11596.
[13] HYEON T, LEE S S, PARK J, et al. Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process[J].Journal of the American Chemical Society,2001,123(51):12798-12801.
[14] GRIMM S, SCHULTZ M, BARTH S, et al. Flame pyrolysis-a preparation route for ultrafine pure γ-Fe2O3 powders and the control of their particle size and properties[J]. Journal of Materials Science,1997,32(4):1083-1092.
[15] 李先红, 崔萍, 刘榛榛. 双端羧基聚乙二醇的合成[J]. 化学与生物工程,2005,22(10):42-43. LI X H, CUI P, LIU Z Z. Synthesis of carboxylic-terminated polyethylene glycol[J]. Chemistry & Bioengineering,2005,22(10):42-43.
[16] GONZALEZ-CARRENO T, MORALES M P, SEMA C J, et al. Preparation of uniform γ-Fe2O3 particles with nanometer size by spray pyrolysis[J]. Materials Letters,1993,18(3):151-155.
[17] ASUHA S, ZHAO S, WU H Y, et al. One step synthesis of maghemite nanoparticles by direct thermal decomposition of Fe-urea complex and their properties[J]. Journal of Alloys and Compounds,2009,472(1):L23-L25.
[1] 杨万鹏, 胡本芙, 刘国权, 吴凯. 高性能镍基粉末高温合金中γ'相形态致锯齿晶界形成机理研究[J]. 材料工程, 2015, 43(6): 7-13.
[2] 明宪良, 陈静, 谭华, 杨海欧, 林鑫. 激光立体成形GH4169高温合金γ"相的高温粗化行为[J]. 材料工程, 2014, 0(8): 8-14.
[3] 刘渊, 刘祥萱, 王煊军. 铁氧体基核壳结构复合吸波材料研究进展[J]. 材料工程, 2014, 0(7): 98-106.
[4] 刘繁茂, 张慧燕, 张涛. Fe-Nd-B-Zr块体非晶合金的形成能力和磁性能[J]. 材料工程, 2014, 0(10): 6-10.
[5] 王金香, 高岩, 杨洋, 钱潜, 刘银. Zn2+含量对纳米Ni-Zn铁氧体结构和磁性能的影响[J]. 材料工程, 2012, 0(10): 22-24,34.
[6] 张晓红, 乔英杰. 纤维增强隐身复合材料的研究进展[J]. 材料工程, 2011, 0(8): 87-92.
[7] 徐兴文, 赵海涛, 张罡, 李喜坤. Ni-Zn-La铁氧体/聚苯胺纳米复合材料的原位合成与性能研究[J]. 材料工程, 2011, 0(11): 5-8.
[8] 于美, 刘建华, 李松梅, 徐亮. 空心玻璃微球镍镀层的制备及其电磁性能[J]. 材料工程, 2009, 0(6): 1-4.
[9] 翟永清, 张张, 霍国燕, 郝晓红, 石领娟. 溶胶-凝胶法制备超细Sr2FeMoO6及磁性能研究[J]. 材料工程, 2009, 0(12): 34-36.
[10] 于美, 李松梅, 刘建华, 陈冬梅. 四角状氧化锌晶须表面镍镀层的制备及电磁性能[J]. 材料工程, 2009, 0(1): 28-31,36.
[11] 马瑞廷, 赵海涛, 赵辉, 张罡, 宋凯. Ce取代对纳米晶Ni0.5Zn0.5Fe2O4电磁性能的影响[J]. 材料工程, 2008, 0(10): 114-117.
[12] 冷亮, 孙康宁, 赵琰. 水热熟化对Fe3O4纳米颗粒性能的影响[J]. 材料工程, 2008, 0(10): 236-238,242.
[13] 关飞飞, 姚兰芳, 谢伏将, 田琳琳, 方学玲, 卜胜利. 纳米α-Fe2O3/SiO2复合材料的制备及磁性能[J]. 材料工程, 2008, 0(10): 254-256.
[14] 乔梁, 蒋梅燕, 郑精武, 游李顺, 姜力强. 自蔓延高温合成La-Zn掺杂锶铁氧体改性研究[J]. 材料工程, 2007, 0(8): 20-23.
[15] 庞利佳, 孙光飞, 陈菊芳, 梁家欢, 张锦标, 黎文安. 纳米复合Pr2Fe14B/α-Fe永磁材料晶化行为和磁性能的研究[J]. 材料工程, 2007, 0(1): 3-6.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn