Please wait a minute...
 
材料工程  2014, Vol. 0 Issue (8): 51-54    DOI: 10.11868/j.issn.1001-4381.2014.08.010
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
雾化热分解-氧化五羰基铁制备磁性氧化铁纳米粒子
王新星1,2, 张宝林1,2, 王行展1,2, 冯凌云1,2
1. 桂林理工大学 广西有色金属及特色材料加工省部共建国家重点实验室培育基地, 广西 桂林 541004;
2. 桂林理工大学 材料科学与工程学院, 广西 桂林 541004
Magnetic Iron Oxide Nanoparticles Prepared by Spray Pyrolysis-oxidation of Iron Pentacarbonyl
WANG Xin-xing1,2, ZHANG Bao-lin1,2, WANG Xing-zhan1,2, FENG Ling-yun1,2
1. State Key Laboratory Breeding Base of Nonferrous Metals and Specific Materials Processing, Guilin University of Technology, Guilin 541004, Guangxi, China;
2. College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, Guangxi, China
全文: PDF(2010 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 通过雾化热分解-氧化五羰基铁(Fe(CO)5),在雾化液中添加三乙二醇(TREG)和三正辛基氧膦(TOPO),及在收集液中添加羧基化单甲醚聚乙二醇(MPEG-COOH)等有机修饰剂合成γ-Fe2O3纳米粒子。研究两段加热和单段加热对合成γ-Fe2O3纳米粒子的形貌、粒径、分散性的影响,同时分析温度对γ-Fe2O3纳米粒子结晶性、形貌及磁性能的影响。结果表明:合成的γ-Fe2O3纳米粒子结晶度随温度的升高而增加; MPEG-COOH已经修饰在γ-Fe2O3纳米粒子表面;在单段加热模式下温度为360,390,420℃和450℃时合成的γ-Fe2O3纳米粒子在300K下都具有超顺磁性,饱和磁化强度分别为30,37,41,71A·m2·kg-1;单段加热模式较两段加热模式合成的γ-Fe2O3纳米粒子分散性更好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王新星
张宝林
王行展
冯凌云
关键词 &gamma-Fe2O3雾化热分解两段加热单段加热磁性能    
Abstractγ-Fe2O3 nanoparticles were synthesized via spray pyrolysis-oxidation of iron pentacarbonyl (Fe(CO)5)containing triethylene glycol(TREG)and trioctylphosphine oxide(TOPO)in atomizing liquid, and containing carboxyl-monomethoxypoly(ethy1ene glycol)(MPEG-COOH)in collecting liquid. The effects of two-stage heating and single-stage heating on the morphologies, size and dispersing properties of γ-Fe2O3 nanoparticles were investigated. The effects of temperature on crystallinities,morphologies and magnetic properties of γ-Fe2O3 nanoparticles were analyzed. The results show that the crystallinities of the synthesized γ-Fe2O3 nanoparticles increase with the increasing of temperature. MPEG-COOH is modified on the surface of γ-Fe2O3 nanoparticles. In single-stage heating the γ-Fe2O3 nanoparticles synthesizing at 360, 390, 420℃ and 450℃ are superparamagnetic at 300K with saturation magnetization of 30, 37, 41, 71A·m2·kg-1, respectively. The dispersing properties of γ-Fe2O3 nanoparticles synthesizing in single-stage heating are better than those of γ-Fe2O3 nanoparticles synthesizing in two-stage heating.
Key wordsγ-Fe2O3    spray pyrolysis    two-stage heating    single-stage heating    magnetic property
收稿日期: 2012-03-12      出版日期: 2014-08-20
中图分类号:  TB383  
基金资助:国家自然科学基金资助项目(50962005,51162003)
通讯作者: 张宝林(1967-),男,博士,教授,从事生物纳米材料研究,联系地址:广西桂林市建干路12号桂林理工大学材料科学与工程学院(541004),E-mail:zhangbaolin@glut.edu.cn     E-mail: zhangbaolin@glut.edu.cn
引用本文:   
王新星, 张宝林, 王行展, 冯凌云. 雾化热分解-氧化五羰基铁制备磁性氧化铁纳米粒子[J]. 材料工程, 2014, 0(8): 51-54.
WANG Xin-xing, ZHANG Bao-lin, WANG Xing-zhan, FENG Ling-yun. Magnetic Iron Oxide Nanoparticles Prepared by Spray Pyrolysis-oxidation of Iron Pentacarbonyl. Journal of Materials Engineering, 2014, 0(8): 51-54.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2014.08.010      或      http://jme.biam.ac.cn/CN/Y2014/V0/I8/51
[1] CAO M S, WANG R, FANG X, et al. Preparing γ'-Fe4N ultrafine powder by twice-nitriding method[J]. Powder Technology,2001,115(1):96-98.
[2] CAO M S, LIU H T, CHEN Y J, et al. Synthesis process and growth mechanism of γ'-Fe4N nanoparticles by phase-transformation[J]. Science in China Series E-Technological Sciences,2003,46(1):104-112.
[3] CHEN Y J, CAO M S, TIAN Q, et al. A novel preparation and surface decorated approach for α-Fe nanoparticles by chemical vapor-liquid reaction at low temperature[J]. Materials Letters,2004,58(9):1481-1484.
[4] CHEN Y J, ZHU C L, WANG L J, et al. Synthesis and enhanced ethanol sensing characteristics of α-Fe2O3/SnO2 core-shell nanorods[J]. Nanotechnology,2009,20(4):045502.
[5] COROT C. Recent advances in iron oxide nanocrystal technology for medical imaging[J]. Advanced Drug Delivery Reviews,2006,58(14):1471-1504.
[6] WEISSLEDER R. Long-circulating iron oxides for MR imaging[J]. Advanced Drug Delivery Reviews,1995,16(2):321-324.
[7] TAN W, WANG K, HE X, et al. Bionanotechnology based on silica nanoparticles[J]. Medicinal Research Reviews,2004,24(5):621-638.
[8] GUPTA A K, GUPTA M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications[J]. Biomaterials,2005,26(18):3995-4021.
[9] LEE S J, JEONG J R, SHIN S C, et al. Magnetic enhancement of iron oxide nanoparticles encapsulated with poly (D, L-latide-co-glycolide)[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2005,255(1):19-25.
[10] NAKANISHI T, LIDA H, OAAKA T, et al. Preparation of iron oxide nanoparticles via successive reduction-oxidation in reverse micelles[J]. Chemistry Letters,2003,(12):1166-1167.
[11] NARASIMAN B R V, PRABHAKAR S, MANOHA P R, et al. Synthesis of gamma ferric oxide by direct thermal decomposition of ferrous carbonate[J]. Materials Letters,2002,52(4):295-300.
[12] ROCKENBERGER J, SCHER E C, ALIVISATOS A P, et al. A new nonhydrolytic single-precursor approach to surfactant-capped nanocrystals of transition metal oxides[J]. Journal of the American Chemical Society,1999,21(49):11595-11596.
[13] HYEON T, LEE S S, PARK J, et al. Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process[J].Journal of the American Chemical Society,2001,123(51):12798-12801.
[14] GRIMM S, SCHULTZ M, BARTH S, et al. Flame pyrolysis-a preparation route for ultrafine pure γ-Fe2O3 powders and the control of their particle size and properties[J]. Journal of Materials Science,1997,32(4):1083-1092.
[15] 李先红, 崔萍, 刘榛榛. 双端羧基聚乙二醇的合成[J]. 化学与生物工程,2005,22(10):42-43. LI X H, CUI P, LIU Z Z. Synthesis of carboxylic-terminated polyethylene glycol[J]. Chemistry & Bioengineering,2005,22(10):42-43.
[16] GONZALEZ-CARRENO T, MORALES M P, SEMA C J, et al. Preparation of uniform γ-Fe2O3 particles with nanometer size by spray pyrolysis[J]. Materials Letters,1993,18(3):151-155.
[17] ASUHA S, ZHAO S, WU H Y, et al. One step synthesis of maghemite nanoparticles by direct thermal decomposition of Fe-urea complex and their properties[J]. Journal of Alloys and Compounds,2009,472(1):L23-L25.
[1] 胡洁, 董中奇, 沈英明, 王杨, 杨俊雅. Mo元素对LaFe11.5Si1.5磁制冷材料耐腐蚀性能及磁性能的影响[J]. 材料工程, 2020, 48(8): 119-125.
[2] 郭鸿霞, 张家萌, 王青敏, 毕科. 铁磁/铁电复合介质及其超材料结构微波性能[J]. 材料工程, 2020, 48(6): 43-49.
[3] 涂蕴超, 何承绪, 孟利, 陈冷. 退火工艺参数及母材性能对取向硅钢超薄带磁性能的影响[J]. 材料工程, 2020, 48(1): 61-69.
[4] 梁家浩, 魏智强, 朱学良, 张旭东, 武晓娟, 姜金龙. 尖晶石结构Ni掺杂ZnFe2O4纳米颗粒的性能表征[J]. 材料工程, 2019, 47(10): 113-119.
[5] 赵晖, 马瑞廷, 赵海涛. 合成条件对纳米锌铁氧体形貌与性能的影响[J]. 材料工程, 2018, 46(4): 38-42.
[6] 王晨, 王魁, 肖小波, 丁浩, 汪炳叔, 毛朝武, 张维林, 金钢南. 钨酸钠对取向硅钢绝缘涂层性能的影响[J]. 材料工程, 2018, 46(4): 51-57.
[7] 赵海涛, 马瑞廷, 刘瑞萍. 热分解法制备Ni0.5Zn0.5Fe2O4纳米颗粒[J]. 材料工程, 2017, 45(9): 81-85.
[8] 李悦, 朱立群, 李卫平, 刘慧丛, 南海洋. 钕铁硼器件表面电沉积铜层及性能[J]. 材料工程, 2017, 45(6): 55-60.
[9] 梁瑞洋, 杨平, 毛卫民. 冷轧压下率及初始高斯晶粒取向度对超薄取向硅钢织构演变与磁性能的影响[J]. 材料工程, 2017, 45(6): 87-96.
[10] 谢春晓, 钟守炎, 杨元政, 罗剑英, 廖梓龙. 热处理对(Fe0.52Co0.30Ni0.18)73Cr17Zr10非晶合金的组织结构及磁性能的影响[J]. 材料工程, 2016, 44(8): 46-50.
[11] 钟喜春, 胡庚, 郭兴家, 刘仲武. 流动温压成型黏结钕铁硼/锶铁氧体复合磁体的研究[J]. 材料工程, 2016, 44(4): 9-13.
[12] 金玉花, 韩萍花, 李常锋, 寇生中. 稀土Y,Ce对K418镍基高温合金微观组织的影响[J]. 材料工程, 2016, 44(3): 46-51.
[13] 杨万鹏, 胡本芙, 刘国权, 吴凯. 高性能镍基粉末高温合金中γ'相形态致锯齿晶界形成机理研究[J]. 材料工程, 2015, 43(6): 7-13.
[14] 明宪良, 陈静, 谭华, 杨海欧, 林鑫. 激光立体成形GH4169高温合金γ"相的高温粗化行为[J]. 材料工程, 2014, 0(8): 8-14.
[15] 刘渊, 刘祥萱, 王煊军. 铁氧体基核壳结构复合吸波材料研究进展[J]. 材料工程, 2014, 0(7): 98-106.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn