Please wait a minute...
 
材料工程  2014, Vol. 0 Issue (9): 51-56    DOI: 10.11868/j.issn.1001-4381.2014.09.009
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
5A90铝锂合金超塑性变形的组织演变及变形机理
张盼1,2, 叶凌英1,2, 顾刚1,2, 蒋海春1,2, 张新明1,2
1. 中南大学 材料科学与工程学院, 长沙 410083;
2. 中南大学 有色金属材料科学与工程教育部重点实验室, 长沙 410083
Microstructural Evolution and Deformation Mechanism of 5A90 Al-Li Alloy During Superplastic Deformation
ZHANG Pan1,2, YE Ling-ying1,2, GU Gang1,2, JIANG Hai-chun1,2, ZHANG Xin-ming1,2
1. School of Materials Science and Engineering, Central South University, Changsha 410083, China;
2. Key Laboratory of Nonferrous Materials Science and Engineering (Ministry of Education), Central South University, Changsha 410083, China
全文: PDF(2700 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用光学显微镜、扫描电镜、电子背散射衍射以及高温拉伸实验研究了工业化制备的5A90铝锂合金超塑性板材变形过程中的组织演变及变形机理。结果表明:在高温拉伸前对板材进行450℃/30min再结晶退火后,在温度为475℃、应变速率为8×10-4s-1的适宜超塑性变形条件下,可使伸长率由原始状态的480%提高至880%。整个超塑性变形过程展现出不同的变形机制:初始阶段(ε≤0.59),板材以形变组织为主,晶粒取向差逐渐增大,位错运动为该阶段的主要变形机制。当真应变达到0.59时,动态再结晶开始发生,晶粒取向差继续增大,晶界滑动开始启动。当真应变大于1.55时,晶粒继续长大,但长大幅度不大且保持等轴状,该阶段变形机制以晶界滑动为主。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张盼
叶凌英
顾刚
蒋海春
张新明
关键词 5A90铝锂合金超塑性变形机理显微组织    
Abstract:The microstructural evolution and deformation mechanism of 5A90 Al-Li alloy sheets during superplastic deformation were studied by optical microscopy, scanning electron, electron back scattering diffraction and high temperature tensile test. The results show that the elongation of the specimen, which is recrystallized at 450℃ for 30min before the tensile test, could increase from 480% to 880% at an appropriate superplastic condition of 475℃/8×10-4s-1. The superplastic mechanisms of 5A90 Al-Li alloy sheets are explored by investigating the microstructural evolution. The misorientation increases and dislocation activity plays a key role at the initial stage (ε≤0.59). Dynamic recrystallization begins to occur when the true strain reaches 0.59. With recrystallization, the misorientation between grains becomes larger and grain boundary sliding (GBS) starts at this stage (0.59<ε<1.55). With larger true strains (ε≥1.55), grain continues to grow with a stable microstructure, and superplastic mechanism is dominated by GBS.
Key words5A90 Al-Li alloy    superplasticity    deformation mechanism    microstructure
收稿日期: 2013-03-15     
1:  TG166.3  
基金资助:国家自然科学基金资助项目(51205419)
通讯作者: 叶凌英 (1981- ),男,博士,讲师,主要从事细晶铝锂合金板材的制备及超塑性的研究工作,联系地址:湖南省长沙市麓山南路932号中南大学材料科学与工程学院(410083)     E-mail: yelingying_1981@163.com
引用本文:   
张盼, 叶凌英, 顾刚, 蒋海春, 张新明. 5A90铝锂合金超塑性变形的组织演变及变形机理[J]. 材料工程, 2014, 0(9): 51-56.
ZHANG Pan, YE Ling-ying, GU Gang, JIANG Hai-chun, ZHANG Xin-ming. Microstructural Evolution and Deformation Mechanism of 5A90 Al-Li Alloy During Superplastic Deformation. Journal of Materials Engineering, 2014, 0(9): 51-56.
链接本文:  
http://jme.biam.ac.cn/jme/CN/10.11868/j.issn.1001-4381.2014.09.009      或      http://jme.biam.ac.cn/jme/CN/Y2014/V0/I9/51
[1] 叶凌英.细晶铝锂合金板材的制备原理、技术及超塑性变形行为[D].长沙:中南大学,2010.YE Ling-ying. Fine grain aluminum alloy sheet preparation principle,technology and superplastic deformation behavior[D]. Changsha: Central South University, 2010.
[2] BATE P S, RIDLEY N, ZHANG B, et al. Mechanical behavior and microstructural evolution in superplastic Al-Li-Mg-Cu-Zr AA8090[J].Acta Materialia,2007,55(15):4995-5006.
[3] BRICHNELL R H, EDINGTON J W. Deformation characteristics of an Al-6Cu-0.4Zr superplastic alloy[J]. Metallurgical and Materials Transactions A, 1979, 10(9): 1257-1263.
[4] WATTS B M, STOWELL M J, BAIKIE B L, et.al. Superplasticity in Al-Cu-Zr alloys part Ⅱ: microstructural study [J]. Metal Science, 1976, 10(6): 198-206.
[5] NES E. Strain-induced continuous recrystallization in Zr-bearing aluminium alloys[J]. Journal of Materials Science, 1978, 13(9): 2052-2055.
[6] HALES S J, McNELLEY T R. Microstructural evolution by continuous recrystallization in a superplastic Al-Mg alloy[J]. Acta Metall, 1988, 36(5): 1229-1239.
[7] GANDHI C, RAJ R. A model for subgrain superplastic flow in aluminum alloys[J]. Acta Metallurgica et Materialia, 1991, 39 (4): 679-688.
[8] LYTTLE M T, WERT J A. Modelling of continuous recrystallization in aluminium alloys[J]. Journal of Materials Science, 1994, 29(12): 3342-3350.
[9] BATE P S. Plastic anisotropy in a superplastic aluminum-lithium-magnesium-copper alloy[J]. Metall Trans, 1992, 23(5): 1467-1478.
[10] BATE P S, RIDLEY N, ZHANG B. Microstructure and texture evolution in the tension of superplastic Al-6Cu-0.4Zr[J]. Acta Materialia, 2005, 53(10): 3059-3069.
[11] BLACKWELL P L, BATE P S. The absence of relative grain translation during superplastic deformation of an aluminum-lithium-magnesium-copper-zirconium alloy[J]. Metall Trans, 1993, 24(5): 1085-1093.
[12] 刘志义,崔建忠,白光润. 8090Al-Li 合金亚晶倾转的动态再结晶机制[J]. 材料研究学报, 1992, 6(6): 472-475. LIU Zhi-yi, CUI Jian-zhong, BAI Guang-run. Recrystallization mechanism of sub-grain rotated 8090 Al-Li alloy[J]. Chinese Journal of Materials Research, 1992, 6(6):472-475.
[13] 郑大伟.1420铝锂合金板材的超塑性变形行为及机理[D].长沙:中南大学,2010. ZHENG Da-wei. The superplastic deformation behavior and mechanism of 1420 Al-Li alloy[D]. Changsha: Central South University,2010.
[14] 张新明, 雷钊, 叶凌英. 提高 1420 铝锂合金板材超塑性的方法[J]. 热加工工艺,2012,41(23):9-12. ZHANG Xin-ming, LEI Zhao, YE Ling-ying. Methods of improving superplasticity for 1420 Al-Li alloy sheets[J]. Hot Working Technology, 2012, 41(23): 9-12.
[15] 吴诗惇.金属超塑性变形理论[M].北京:国防工业出版社,1997. WU Shi-dun. The Superplastic Deformation Theory of Metal[M]. Beijing: National Defense Industry Press, 1977.
[16] PADMANABHANK A, DAVIES G L. Superplasticity[M]. Berlin: Springer, 1980.
[17] FAN W. Flow behavior and microstructural evolution during superplastic deformation of AA8090 Al-Li alloy[D]. Ottawa: Manitoba, 1998.
[18] LIU J, CHAKRABARTI D J. Grain structure and microtexture evolution during superplastic forming of a high strength Al-Zn-Mg-Cu alloy[J]. Acta Materialia, 1996, 44(12): 4647-4661.
[19] 王旭,曹京霞,黄旭. Ti3Al基合金板材的超塑性研究[J].航空材料学报, 2012, 32(1):20-24. WANG Xu, CAO Jing-xia, HUANG Xu. Investigation on superplasticity of Ti3Al alloy sheet[J]. Journal of Aeronautical Materials, 2012, 32(1): 20-24.
[1] 雷玉成, 龚晨诚, 罗雅, 肖波, 朱强. 激励电流对MGH956合金原位合金化TIG焊接头性能的影响[J]. 材料工程, 2015, 43(2): 7-13.
[2] 冯广杰, 李卓然, 朱洪羽, 徐慨. SiC陶瓷真空钎焊接头显微组织和性能[J]. 材料工程, 2015, 43(1): 1-5.
[3] 邵长斌, 熊江涛, 孙福, 张赋升, 李京龙. TC4钛合金与YG8硬质合金高频感应钎焊组织及性能研究[J]. 材料工程, 2014, 0(9): 26-31.
[4] 王智慧, 万国力, 贺定勇, 蒋建敏, 崔丽. Fe-Cr-B-C堆焊合金的组织与耐磨性[J]. 材料工程, 2014, 0(9): 57-62.
[5] 郑漫庆, 王高潮, 徐雪峰, 喻淼真. TC4-DT合金的超塑性变形及其本构方程[J]. 材料工程, 2014, 0(9): 63-67.
[6] 郑漫庆, 王高潮, 喻淼真, 徐雪峰. 应变速率循环法构建TC4-DT钛合金本构方程[J]. 材料工程, 2014, 0(8): 32-35.
[7] 周静怡, 赵文侠, 郑真, 曲士昱, 贾新云, 郑运荣. 硼含量对IC10高温合金凝固行为的影响[J]. 材料工程, 2014, 0(8): 90-96.
[8] 初雅杰, 李晓泉, 吴申庆, 徐振钦, 杜舜尧. 热压形变参数对AZ31镁合金接头微观组织和力学性能的影响[J]. 材料工程, 2014, 0(6): 35-39.
[9] 田俊, 薛顺, 吴铖川, 成国光, 周国治, 王文虎, 盛伟. 弹簧钢热处理前后显微组织对抗腐蚀性能的影响[J]. 材料工程, 2014, 0(4): 18-25.
[10] 王少华, 马志锋, 张显峰, 孙刚, 冯朝辉, 李伟, 陆政. Al-Zn-Mg-Cu-Zr-0.5Er合金型材组织性能研究[J]. 材料工程, 2014, 0(3): 27-33.
[11] 马秀萍, 李超. 铸造过热度和热处理对CoCrMo合金显微组织的影响[J]. 材料工程, 2014, 0(3): 66-70.
[12] 程秀, 胡树兵, 宋武林, 李振. 球墨铸铁的等离子束表面强化研究[J]. 材料工程, 2014, 0(1): 12-18.
[13] 耿波, 张路, 范念青, 夏志新, 刘江南. 水蒸气温度和流量对T91钢氧化行为的影响[J]. 材料工程, 2014, 0(1): 52-57.
[14] 卢金文, 葛鹏, 赵永庆. Mo对Ti-Mo系合金显微组织的影响及其强化效应[J]. 材料工程, 2013, 0(9): 1-5.
[15] 陈雨来, 董长征, 蔡庆伍, 万德成, 李亮, 齐越. Mo和Ni对高强无碳化物贝氏体钢组织转变与力学性能的影响[J]. 材料工程, 2013, 0(9): 16-21.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn