Please wait a minute...
 
材料工程  2014, Vol. 0 Issue (9): 68-75    DOI: 10.11868/j.issn.1001-4381.2014.09.012
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
复杂断面空心铝型材分流模挤压焊合过程金属流变行为分析
黄东男1, 于洋2, 李有来1, 左壮壮1
1. 内蒙古工业大学 材料科学与工程学院, 呼和浩特 010051;
2. 北京航空材料研究院, 北京 100095
Metal Flowing Behavior During Welding Process of Porthole Extrusion for Complicate Al-alloy Profile
HUANG Dong-nan1, YU Yang2, LI You-lai1, ZUO Zhuang-zhuang1
1. School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot 010051, China;
2. Beijing Institute of Aeronautical Materials, Beijing 100095, China
全文: PDF(3971 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用有限元法结合焊合区网格重构技术,揭示了复杂断面空心铝型材焊合时的金属流变行为,优化了分流孔面积、位置、宽展角等结构参数,使得同步焊合面由原来1个增加到5个,消除了型材断面中部流速快、左部慢与底面卷翘等成形缺陷。焊合室内最大静水压力达484MPa,能够满足焊合质量,模芯周围受力分布均匀,有利于减小型材壁厚超差。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄东男
于洋
李有来
左壮壮
关键词 数值模拟挤压铝型材焊合    
Abstract:Using FEM combined with mesh reconstruction technology in welding zone, the metal flowing behaviors during welding process of porthole extrusion for a complicate profile were obtained. The die construction, including adjusting the porthole area, position, the expanding angle, was optimized. After optimizing, the number of metal planes welding simultaneously increases from 1 to 5. The homogeneity of the metal flowing velocities near the center and the left side of the profile is improved, and the warp at the bottom of the profile is avoided. The maximal hydrostatic stress in welding chamber is 484MPa which is enough to meet the requirement of welding. The distribution of the hydrostatic stress around the mandrel is uniform which is beneficial to avoid thickness deviation of the profile.
Key wordsnumerical simulation    extrusion    Al-alloy profile    welding
收稿日期: 2014-04-28     
1:  TG379  
基金资助:国家自然科学基金资助项目(51364027);内蒙古自然科学基金资助项目(2013MS0708);内蒙古自治区高等学校科学研究项目(NJZY13105)
通讯作者: 黄东男(1979- ),男,副教授,博士,主要从事金属挤压理论与工艺的研究工作,联系地址:内蒙古呼和浩特市新城区爱民街49号内蒙古工业大学材料科学与工程学院(010051)     E-mail: dongnan_2000@163.com
引用本文:   
黄东男, 于洋, 李有来, 左壮壮. 复杂断面空心铝型材分流模挤压焊合过程金属流变行为分析[J]. 材料工程, 2014, 0(9): 68-75.
HUANG Dong-nan, YU Yang, LI You-lai, ZUO Zhuang-zhuang. Metal Flowing Behavior During Welding Process of Porthole Extrusion for Complicate Al-alloy Profile. Journal of Materials Engineering, 2014, 0(9): 68-75.
链接本文:  
http://jme.biam.ac.cn/jme/CN/10.11868/j.issn.1001-4381.2014.09.012      或      http://jme.biam.ac.cn/jme/CN/Y2014/V0/I9/68
[1] 谢建新. 金属挤压技术的发展现状与趋势[J].中国材料进展, 2013,32(5):254-263.XIE J X.Current situation and development trends of metals extrusion technology[J]. Materials China,2013,32(5):254-263.
[2] 谢建新,刘静安.金属挤压理论与技术 [M]. 2版.北京:冶金工业出版社,2012.XIE J X, LIU J A. Theory and Technology for Metal Extrusion[M]. 2nd ed. Beijing: Metallurgical Industry Press, 2012.
[3] 张志豪, 谢建新. 挤压模具数字化设计与数字化制造[J]. 中国材料进展, 2013,32(5):293-299.ZHANG Z H,XIE J X. Digital design and manufacture of extrusion die[J]. Materials China, 2013, 32(5):293-299.
[4] 邸利青,张士宏.分流组合模挤压过程数值模拟及模具优化设计[J].塑性工程学报,2009,16(2):123-127.DI L Q,ZHANG S H. Porthole die extrusion process numerical simulation and optimal die design[J]. Journal of Plasticity Engineering, 2009,16(2):123-127.
[5] 唐鼎,邹天下,李大永,等.亚毫米孔径微通道铝合金管挤压成形的数值模拟[J].塑性工程学报, 2011,18(3): 25-29.TANG D, ZOU T X, LI D Y,et al. Numerical simulation study upon extrusion forming of microchannel tube[J]. Journal of Plasticity Engineering, 2011,18(3):25-29.
[6] LIU P, XIE S S, CHENG L.Die structure optimization for a large, multi-cavity aluminum profile using numerical simulation and experiments[J]. Materials and Design, 2012,36:152-160.
[7] ZHANG C S, ZHAO G Q, CHEN Z R,et al. Effect of extrusion stem speed on extrusion process for a hollow aluminum profile[J]. Materials Science and Engineering: B,2012,177(19):1691-1697.
[8] LIU G, ZHOU J, DUSZCZYK J. FE analysis of metal flow and weld seam formation in a porthole die during the extrusion of a magnesium alloy into a square tube and the effect of ram speed on weld strength [J]. Journal of Materials Processing Technology, 2008,200(1-3):85-98.
[9] YANG D Y, KIM K J. Design of processes and products through simulation of three-dimensional extrusion[J]. Journal of Materials Processing Technology,2007,191(1-3):2-6.
[10] 徐磊, 赵国群, 张存生,等.多腔壁板铝型材挤压过程数值模拟及模具优化[J].机械工程学报,2011,47(22):61-68. XU L,ZHAO G Q, ZHANG C S,et al.Numerical simulation of extrusion process and die optimization for aluminum multi-cavity profile[J]. Journal of Mechanical Engineering,2011, 47(22): 61-68.
[11] 喻俊荃, 赵国群,张存生,等. 阻流块对薄壁空心铝型材挤压过程材料流速的影响[J].机械工程学报,2012,48(16): 52-58. YU J Q, ZHAO G Q, ZHANG C S,et al. Effect of baffle-block on material flow velocity during thin-walled hollow aluminum profile extrusion[J]. Journal of Mechanical Engineering, 2012, 48(16): 52-58.
[12] 宋佳胜,林高用,贺家健,等.列车车体 106XC 型材挤压过程数值模拟及模具优化[J].中南大学学报:自然科学版, 2012,43(9):3372-3379. SONG J S,LIN G Y, HE J J,et al.Numerical simulation of extrusion process and die optimization of 106XC aluminum body profile for track vehicle[J]. Journal of Central South University: Science and Technology,2012,43(9):3372-3379.
[13] 黄东男,于 洋,宁 宇, 等. 分流模挤压非对称断面铝型材有限元数值模拟分析[J].材料工程,2013,(3):32-37. HUANG D N, YU Y,NING Y,et al. FEM simulation of an Al-alloy profile with non-symmetrical cross section during porthole extursion[J]. Journal of Materials Engineering, 2013,(3):32-37.
[14] 谢建新,黄东男,李静媛,等. 一种空心型材分流模挤压焊合过程数值模拟技术[P]. 中国专利: ZL200910088960.7, 2010-10-27. XIE J X, HUANG D N, LI J Y, et al. A numerical simulation technology for hollow profile extrusion by porthole die. China Patent: ZL20091008896.7,2010-10-27.
[15] 黄东男,李静媛,张志豪,等.方形管分流模双孔挤压过程中金属的流动行为[J].中国有色金属学报,2010,20(3): 488-495. HUANG D N, LI J Y,ZHANG Z H, et al. The metal flowing behaviors during the diplopore extrusion of square tube by a porthole die[J]. The Chinese Journal of Nonferrous Metals, 2010,20(3):488-495.
[16] 黄东男,张志豪,李静媛,等. 焊合室深度及焊合角对方形管分流模双孔挤压成形质量的影响[J]. 中国有色金属学报, 2010,20(5):954-960. HUANG D N, ZHANG Z H, LI J Y,et al.Influence of welding chamber depth and welding angle on forming quality of diplopore extrusion of square tube by a porthole die[J]. The Chinese Journal of Nonferrous Metals, 2010,20(5):954-960.
[1] 王宁, 李健, 关志军, 谭凯. 工艺参数对钼粉烧结体近等温包套锻造成形过程中应变的影响[J]. 材料工程, 2015, 43(6): 46-51.
[2] 傅田, 李文亚, 杨夏炜, 李锦锋, 高大路. 搅拌摩擦点焊技术及其研究现状[J]. 材料工程, 2015, 43(4): 102-114.
[3] 彭建, 彭毅, 韩韡, 潘复生. 挤压温度对Mg-2Zn-Mn-0.5Nd镁合金组织和性能的影响[J]. 材料工程, 2015, 43(3): 23-27.
[4] 王智慧, 万国力, 贺定勇, 蒋建敏, 崔丽. Fe-Cr-B-C堆焊合金的组织与耐磨性[J]. 材料工程, 2014, 0(9): 57-62.
[5] 陈飞飞, 齐乐华, 周计明, 关俊涛, 徐乙人. 压电驱动式微挤压成形系统设计及实验研究[J]. 材料工程, 2014, 0(3): 50-54.
[6] 王国林, 刘高君, 王磊, 张铃欣. 轮胎胎面胶料共挤出成型的有限元仿真研究[J]. 材料工程, 2014, 0(2): 51-54.
[7] 杨亮, 李嘉荣, 金海鹏, 谢洪吉, 韩梅, 刘世忠. DD6单晶精铸薄壁试样定向凝固过程数值模拟[J]. 材料工程, 2014, 0(11): 15-22.
[8] 刘兆华, 王晓琪, 陈亮伟, 起华荣, 史庆南. 复合SPD制备超细晶6061铝合金的组织及性能[J]. 材料工程, 2014, 0(11): 62-66.
[9] 强斌, 刘宇杰, 阚前华. 粘接界面泡沫铝夹芯板的三点弯曲失效数值模拟[J]. 材料工程, 2014, 0(11): 97-101.
[10] 王卺, 赵国群, 王广春, 袁君. 应力三轴度及轧辊凸度对93钨合金板材轧制损伤的影响[J]. 材料工程, 2014, 0(10): 27-33.
[11] 于超, 任会兰, 宁建国. 钨合金力学性能表征分子动力学模拟[J]. 材料工程, 2014, 0(10): 82-89.
[12] 李权, 杨锦, 蒋显全, 程仁菊, 刘文君, 曾斌. AZ系列镁合金热模拟挤压组织均匀性研究[J]. 材料工程, 2013, 0(9): 64-68.
[13] 刘庆生, 何文, 曾芳金, 薛济来. 不同铝电解时间下阴极炭块的损伤特性研究[J]. 材料工程, 2013, 0(7): 92-96.
[14] 王韬, 曹伟, 颜悦, 厉蕾. 聚碳酸酯熔体挤压流变研究[J]. 材料工程, 2013, 0(5): 73-77.
[15] 廖娟, 凌泽民, 彭小洋. 考虑相变的铝合金管焊接残余应力数值模拟[J]. 材料工程, 2013, 0(4): 34-38.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn