Please wait a minute...
 
材料工程  2014, Vol. 0 Issue (11): 97-101    DOI: 10.11868/j.issn.1001-4381.2014.11.017
  测试与表征 本期目录 | 过刊浏览 | 高级检索 |
粘接界面泡沫铝夹芯板的三点弯曲失效数值模拟
强斌, 刘宇杰, 阚前华
西南交通大学 力学与工程学院, 成都 610031
Numerical Simulation for Three-point Bending Failure of Aluminum Foam Sandwich Panels with Cohesive Interface
QIANG Bin, LIU Yu-jie, KAN Qian-hua
School of Mechanics and Engineering, Southwest Jiaotong University, Chengdu 610031, China
全文: PDF(1770 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 对粘接界面泡沫铝夹芯板三点弯曲载荷下的变形特性进行了实验和数值模拟方面的研究。基于有限元软件ABAQUS建立了泡沫铝夹芯板的三维有限元模型,应用内聚力模型对三点弯曲过程中典型的破坏模式——面板与芯层的界面脱粘给予了合理的模拟,模拟所得的结果与实验结果比较吻合。并在此基础上分析了面板和芯层厚度对夹芯板承载能力和吸收能量能力的影响。结果表明,增加芯层的厚度能够更大程度上提高泡沫铝夹芯板的承载能力和吸收能量的能力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
强斌
刘宇杰
阚前华
关键词 泡沫铝夹芯板内聚力模型三点弯曲实验数值模拟    
Abstract:The deformation characteristics on three-point bending of aluminum foam sandwich panels were investigated by the experimental observation and numerical simulation. The 3-D finite element(FE) model for aluminum foam sandwich panels was developed by FE software ABAQUS. The bonding layer was descried by the cohesive zone model. The interfacial debonding between the face sheet and the core of aluminum foam,a typical failure mode of bonding aluminum foam sandwich panels under three-point bending, was simulated reasonably. The numerical results show a good agreement between the load-displacement responses and the failure mode observed in experiments. Furthermore, the influence of the thickness of face sheet and the core of aluminium foam on bearing force and energy absorption capacity was analyzed. The results show that an increased core thickness of aluminum foam can provide higher bearing force and energy absorption capacity of aluminum foam sandwich panels.
Key wordsaluminum foam sandwich panel    cohesive zone model    three-point bending    numerical simulation
收稿日期: 2013-05-04      出版日期: 2014-11-20
1:  TG146.2  
基金资助:国家自然科学基金项目(11002119)
通讯作者: 刘宇杰(1978-), 男, 博士, 副教授, 主要从事材料循环本构关系、疲劳与损伤力学以及轻质材料的力学行为方面研究, 联系地址:成都市二环路北一段111号西南交通大学力学与工程学院(610031).     E-mail: yjliu6@163.com
引用本文:   
强斌, 刘宇杰, 阚前华. 粘接界面泡沫铝夹芯板的三点弯曲失效数值模拟[J]. 材料工程, 2014, 0(11): 97-101.
QIANG Bin, LIU Yu-jie, KAN Qian-hua. Numerical Simulation for Three-point Bending Failure of Aluminum Foam Sandwich Panels with Cohesive Interface. Journal of Materials Engineering, 2014, 0(11): 97-101.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2014.11.017      或      http://jme.biam.ac.cn/CN/Y2014/V0/I11/97
[1] 魏鹏,柳林.孔径可调的泡沫铝材料制备研究[J],材料工程,2005,(9):30-33.WEI P, LIU L. Preparation of foamed aluminum with controllable size of pore [J].Journal of Materials Engineering, 2005,(9):30-33.
[2] 刘培生,马晓明.高孔率泡沫金属材料疲劳表征模型及实验研究[J].材料工程,2012,(5):47-58.LIU P S, MA X M. Fatigue model for foamed metals with high porosity and corresponding experimental study [J]. Journal of Materials Engineering, 2012,(5):47-58.
[3] 谢中友, 虞吉林,郑志军. 泡沫金属填充圆管横向线载荷作用下的压入分析[J]. 工程力学,2011,28(8):248-256.XIE Z Y, YU J L, ZHENG Z J. Indentation analysis of metallic foam-filled cylindrical pipe under transversely linear loading [J]. Engineering Mechanics, 2011, 28(8): 248-256.
[4] 寇玉亮, 陈常青, 卢天健.泡沫铝率相关本构模型及其在三明治夹芯板冲击吸能特性的应用研究[J]. 固体力学学报,2011,32(3):217-227.KOU Y L,CHEN C Q, LU T J.A rate-dependent constitutive model for aluminum foams and its application to the energy absorption of lightweight sandwich panels with aluminum foam c ores[J]. Chinese Journal of Solid Mechanics,2011,32(3):217-227.
[5] KALLINA I, ZEIDLER F, BAUMANN K H, et al. The offset crash against a deformable barrier, a more realistic frontal impact[A]. In Proceedings of the 14th International Technical Conference on Enhanced Safety of Vehicles[C]. Washington DC, 1994, 1300-1304.
[6] NASSAR H, ALBAKRI M, PAN H, et al. On the gas pressure forming of aluminium foam sandwich panels: Experiments and numerical simulations[J]. CIRP Annals-Manufacturing Technology, 2012, 61: 243-246.
[7] ZAREI H R, KROGER M. Bending behavior of empty and foam-filled beams: Structural optimization[J]. International Journal of Impact Engineering, 2008, 35: 521-529.
[8] 赵桂平, 卢天健. 多孔金属夹层板在冲击荷载作用下的动态响应[J]. 力学学报, 2008,40(2):194-206.ZHAO G P, LU T J. Dynamic response of cellular metallic sandwich plates under impact loading [J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(2):194-206.
[9] 谢中友, 李剑荣, 虞吉林. 泡沫铝填充薄壁圆管的三点弯曲实验的数值模拟[J]. 固体力学学报,2007, 28(3):261-265.XIE Z Y, LI J R, YU J L. Numerical simulation of three-point bending experiments of thin-walled cylindrical tubes filled with aluminum foam [J]. Acta Mechanica Solida Sinica, 2007, 28(3): 261-265.
[10] 查海波, 凤仪, 朱琪琪,等.泡沫铝层合梁的弯曲性能[J].中国有色金属学报,2007,17(2):290-295. ZHA H B, FENG Y, ZHU Q Q, et al. Bending capability of foam aluminum sandwich beams [J].The Chinese Journal of Nonferrous Metals, 2007, 17(2):290-295.
[11] 尚金堂,何德坪.泡沫铝层合梁的三点弯曲变形[J].材料研究学报, 2003,17(1):31-38. SHANG J T, HE D P. Deformation of sandwich beams with Al foam cores in three-point bending [J]. Chinese Journal of Materials Research, 2003, 17(1):31-38.
[12] 黄刘刚.内聚力模型的分析及有限元子程序开发[D].郑州:郑州大学,2010. HUANG L G. The Analysis of cohesive zone model and user-defined subroutine development in finite element method[D].Zhengzhou:Zhengzhou University,2010.
[13] 滕锦,李斌太,庄茁.z-pin增韧复合材料层合板低速冲击损伤过程研究[J].工程力学, 2006,23(增刊1):209-216. TENG J, LI B T, ZHUANG Z. A study on low-velocity impact damage of z-pin reinforced laminates [J]. Engineering Mechanics, 2006, 23(Suppl 1):209-216.
[14] 胡靖,钱振东. 环氧沥青混合料细观尺度水损坏特性[J]. 东南大学学报, 2013, 43(2):355-359. HU J, QIAN Z D. Micro-scale moisture damage characteristics in epoxy asphalt concrete [J]. Journal of Southeast University. 2013, 43(2):355-359.
[15] 许巍,杨金水,王飞, 等.含曲线型膜基界面的高分子基金属薄膜延展性能[J].固体力学学报,2011,32(1):1-8. XU W, YANG J S, WANG F, et al. Ductility of polymer-supported metal films with curved interfaces[J]. Chinese Journal of Solid Mechanics, 2011,32(1):1-8.
[1] 王宁, 李健, 关志军, 谭凯. 工艺参数对钼粉烧结体近等温包套锻造成形过程中应变的影响[J]. 材料工程, 2015, 43(6): 46-51.
[2] 傅田, 李文亚, 杨夏炜, 李锦锋, 高大路. 搅拌摩擦点焊技术及其研究现状[J]. 材料工程, 2015, 43(4): 102-114.
[3] 黄东男, 于洋, 李有来, 左壮壮. 复杂断面空心铝型材分流模挤压焊合过程金属流变行为分析[J]. 材料工程, 2014, 0(9): 68-75.
[4] 王国林, 刘高君, 王磊, 张铃欣. 轮胎胎面胶料共挤出成型的有限元仿真研究[J]. 材料工程, 2014, 0(2): 51-54.
[5] 杨亮, 李嘉荣, 金海鹏, 谢洪吉, 韩梅, 刘世忠. DD6单晶精铸薄壁试样定向凝固过程数值模拟[J]. 材料工程, 2014, 0(11): 15-22.
[6] 王卺, 赵国群, 王广春, 袁君. 应力三轴度及轧辊凸度对93钨合金板材轧制损伤的影响[J]. 材料工程, 2014, 0(10): 27-33.
[7] 于超, 任会兰, 宁建国. 钨合金力学性能表征分子动力学模拟[J]. 材料工程, 2014, 0(10): 82-89.
[8] 刘庆生, 何文, 曾芳金, 薛济来. 不同铝电解时间下阴极炭块的损伤特性研究[J]. 材料工程, 2013, 0(7): 92-96.
[9] 廖娟, 凌泽民, 彭小洋. 考虑相变的铝合金管焊接残余应力数值模拟[J]. 材料工程, 2013, 0(4): 34-38.
[10] 黄东男, 于洋, 宁宇, 马玉. 分流模挤压非对称断面铝型材有限元数值模拟分析[J]. 材料工程, 2013, 0(3): 32-37.
[11] 赵彦玲, 周凯, 车万博, 铉佳平, 车春雨. 铝硅合金轧制中增强体颗粒应力集中数值模拟[J]. 材料工程, 2013, 0(3): 51-54,60.
[12] 王晓霞, 王成国, 贾玉玺, 罗玲. 热固性树脂固化动力学模型简化的新方法[J]. 材料工程, 2012, 0(6): 67-70.
[13] 刘海燕, 宋卫东, 栗建桥. 钨合金动态力学性能的三维数值模拟研究[J]. 材料工程, 2012, 0(6): 71-75.
[14] 朱飞, 张林进, 蔡道林, 叶旭初. 卧式行星球磨机最佳参数的数值模拟[J]. 材料工程, 2012, 0(5): 10-14.
[15] 刘君, 郭学锋, 张忠明, 叶永南. 工艺参数对AZ31镁合金往复挤压过程的影响[J]. 材料工程, 2012, 0(5): 70-75.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn