Please wait a minute...
 
材料工程  2014, Vol. 0 Issue (12): 39-43    DOI: 10.11868/j.issn.1001-4381.2014.12.007
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
PEG4000用量对溶胶-凝胶法制备多孔钛酸锶光催化剂的影响
王宏, 都玲, 孙欣, 张文杰
沈阳理工大学 环境与化学工程学院, 沈阳 110159
Effect of PEG4000 Amount on Porous Strontium Titanate Photocatalyst by Sol-gel Method
WANG Hong, DU Ling, SUN Xin, ZHANG Wen-jie
School of Environmental and Chemical Engineering, Shenyang Ligong University, Shenyang 110159, China
全文: PDF(3466 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 以聚乙二醇PEG4000为模板剂,采用溶胶-凝胶法制备多孔钛酸锶光催化剂,研究PEG4000添加量对催化剂组成和性能的影响.结果表明:添加模板剂后样品的比表面积显著增大,钛酸锶的物相由Sr2TiO4转变成SrTiO3.随着模板剂添加量的增加,样品的颗粒粒径逐渐变小,SrTiO3相的晶粒尺寸也逐渐下降.当PEG4000的添加量为1.5g时,多孔样品由SrTiO3和SrCO3相组成,SrTiO3相的特征衍射峰强度最大,样品的光催化活性最强.当光催化时间为120min时,甲基橙在多孔样品上的降解率为97.9%,明显高于未添加PEG4000制备的样品.
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王宏
都玲
孙欣
张文杰
关键词 钛酸锶光催化PEG4000溶胶-凝胶    
Abstract:PEG4000 was used as the template to prepare porous strontium titanate by sol-gel method. The effect of PEG4000 amount on composition and properties of the photocatalysts was investigated. The results show that, specific surface area of the porous samples increases apparently and strontium titanate phase changes from Sr2TiO4 to SrTiO3 after the addition of the template. Particle size of the samples and crystallite size of SrTiO3 decrease constantly with increasing template amount. The porous sample prepared using 1.5g PEG4000 is composed of SrTiO3 and SrCO3 phase, presenting both the strongest diffraction peak of SrTiO3 and the maximum photocatalytic activity.Degradation rate of methyl orange is 97.9%, which is obviously higher than that on the sample without PEG4000, after 120min of irradiation on the porous sample.
Key wordsstrontium titanate    photocatalysis    PEG4000    sol-gel
收稿日期: 2013-06-13      出版日期: 2014-12-20
1:  O643  
基金资助:国家自然科学基金资助项目(41271251);沈阳理工大学辽宁省废水治理技术重点实验室开放基金资助(4771004kfs02)
通讯作者: 张文杰 (1969-),男,博士,教授,研究方向:环境净化功能材料, 联系地址:辽宁省沈阳市浑南新区沈阳理工大学环境与化学工程学院 (110159)     E-mail: wjzhang@aliyun.com
引用本文:   
王宏, 都玲, 孙欣, 张文杰. PEG4000用量对溶胶-凝胶法制备多孔钛酸锶光催化剂的影响[J]. 材料工程, 2014, 0(12): 39-43.
WANG Hong, DU Ling, SUN Xin, ZHANG Wen-jie. Effect of PEG4000 Amount on Porous Strontium Titanate Photocatalyst by Sol-gel Method. Journal of Materials Engineering, 2014, 0(12): 39-43.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2014.12.007      或      http://jme.biam.ac.cn/CN/Y2014/V0/I12/39
[1] HOFFMANN M R, MARTIN S T, CHOI W, et al. Environmental applications of semiconductor photocatalysis[J]. Chemical Review,1995,95(1):69-96.
[2] FUJISHIMA A, RAO T N, TRYK D A. Titanium dioxide photocatalysis[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews,2000,1(1):1-21.
[3] ENG H W, BARNES P W, AUER B M, et al. Investigations of the electronic structure of d0 transition metal oxides belonging to the perovskite family[J]. Solid State Chemistry,2003,175(1):94-96.
[4] KATO H, KUDO A. Energy structure and photocatalytic activity for water splitting of Sr2(Ta1-xNbx)2O7 solid solution[J]. Journal of Photochemistry and Photobiology A:Chemistry,2001,145(1-2):129-132.
[5] SBAOLSKY E M, JMAE A R, KOWOM S, et al. Piezoelectric porperties of (001) textured Pb(Mgl/3Nb2/3)O3-PbTiO3 [J]. Applied Physics Letters,2001,78(17):2551-2553.
[6] AKUTO K, SAKURAI Y. Photochargeable metal hydride/air battery[J]. Journal of Electrochemical Society,2001,148(2):121-125.
[7] AVUDAITHAI M, KUTTY T R N. Ultrafine powders of SrTiO3 from the hydrothermal preparation and their catalytic activity in the photolysis of water[J]. Materials Research Bulletin,1987,22(5):641-650.
[8] KATO H, KUDO A. Visible-light-response and photocatalytic activities of TiO2 and SrTiO3 photocatalysts codoped with antimony and chromium[J]. Journal of Chemical Physics B,2002,106(19):5029-5034.
[9] ZHANG S C, LIU J X, HAN Y X, et al. Formation mechanisms of SrTiO3 nanoparticles under hydrothermal conditions[J]. Materials Science and Engineering B,2004,110(1):11-17.
[10] LIU H X, SUN X Q, ZHAO Q L, et al. The syntheses and microstructures of tabular SrTiO3 crystal[J]. Solid-State Electron,2003,47(12):2295-2298.
[11] WANG J S, YIN S, KOMATSU M, et al. Preparation and characterization of nitrogen doped SrTiO3 photocatalyst[J]. Journal of Photochemistry and Photobiochemistry A:Chemistry,2004,165(1-3):149-156.
[12] WANG X W, ZHANG Z Y, ZHOU S X. Preparation of nano-crystalline SrTiO3 powder in sol-gel process[J]. Materials Science and Engineering B,2001,86(1):29-33.
[13] SELVARAJ U, ALAMANDA V, SRIDHAR K, et al. Sol-gel processing of oriented SrTiO3 thin films[J]. Materials Letters,1995,23(1-3):123-137.
[14] POHT J, HABERKOM R, BECK H P. Combustion-synthesis of SrTiO3[J]. Journal of European Ceramic Society,2000,20(6):707-713.
[15] 华中师范大学. 分析化学上册[M]. 北京:高等教育出版社, 2005.277-284. Cental China Normal University.Analytical Chemitry,First Volume[M].Beijing:Higher Education Press,2005.277-284.
[16] ZHANG W J, YU Y, BI F F, et al. Calcination effects on properties of TiO2/HZSM-5 photocatalyst using pretreated HZSM-5 support[J]. Journal of Advanced Oxidation Technologies,2013,16(1):198-205.
[17] SCHWARZ A, HARTIG K J, GETOFF N. Diffusion controlled photocurrent transients at the surface of thin polycrystalline n-TiO2 layers[J]. International Journal of Hydrogen Energy,1988,13(2):81-86.
[18] PARIDA K M, SAHU N. Visible light induced photocatalytic activity of rare earth titania nanocomposites[J]. Journal of Molecular Catalysis A,2008,287(1-2):151-158.
[19] CHEN X Q, ZHANG X W, LEI L C. Electronic structures and photocatalysis properties under visible irradiation of F-doped TiO2 nanotube arrays[J]. Journal of Inorganic Material,2011,26(4):369-374.
[20] POUILLEAU J, DEVILLIERS D, GROULT H, et al. Surface study of a titanium-based ceramic electrode material by X-ray photoelectron spectroscopy[J]. Journal of Materials Science,1997,32(21):5645-5651.
[21] LIU S Z, WANG T X, YANG L Y. Low temperature preparation of nanocrystalline SrTiO3 and BaTiO3 from alkaline earth nitrates and TiO2 nanocrystals[J].Powder Technology,2011,212(2):378-381.
[22] WANG K, JI S F, SHI X J, et al. Autothermal oxidative coupling of methane on the SrCO3/Sm2O3 catalysts[J].Catalysis Communication,2009,10(6):807-810.
[1] 王敏, 郑浩岩, 杨长秀, 高兴莹, 董竹希文, 罗洋, 陈垚. pH值对乙二醇溶胶-凝胶法制备BiVO4光催化性能的影响[J]. 材料工程, 2015, 43(9): 6-11.
[2] 鲍艳, 张永辉, 马建中. 溶液法制备ZnO纳米阵列的影响因素及光催化活性[J]. 材料工程, 2015, 43(8): 19-24.
[3] 张平, 莫尊理, 张春, 韩立娟, 李政. 磁响应性TiO2/石墨烯纳米复合材料的合成及光催化性能[J]. 材料工程, 2015, 43(3): 72-77.
[4] 杨丽丽, 都玲, 于杨, 张文杰. 磷酸处理HZSM-5负载TiO2光催化降解活性艳红X-3B[J]. 材料工程, 2014, 0(9): 94-99.
[5] 赵荣祥, 李秀萍, 徐铸德. 离子液辅助水热法合成树枝状硫化镉及光催化性能[J]. 材料工程, 2014, 0(2): 7-12.
[6] 周琦, 万文露, 张春丽, 贺春林. 提拉法制备二氧化硅陶瓷膜的形貌及性能[J]. 材料工程, 2014, 0(2): 70-74.
[7] 甘小荣, 薛方红, 黄昊, 董星龙, 汪晓允, 于洪涛, 刘艳明, 全燮. SiC/C纳米复合材料的制备与性能表征[J]. 材料工程, 2014, 0(2): 75-80,86.
[8] 王大伟, 王美丽, 李中翔, 赵全亮, 崔岩. 溶胶-凝胶法制备BiFeO3粉体及其表征[J]. 材料工程, 2014, 0(12): 50-54.
[9] 郑树凯, 吴国浩, 张俊英, 康健楠, 王芳, 刘素平, 刘磊. Sn掺杂锐钛矿TiO2薄膜的光催化活性及其能带结构[J]. 材料工程, 2014, 0(1): 70-74.
[10] 任保轶, 王思林, 刘子儒, 张学军. 表面制备SiO2涂层的Ti2AlNb基合金高温氧化激活能研究[J]. 材料工程, 2013, 0(7): 6-10.
[11] 杨玉昌, 王锋, 胡剑青, 涂伟萍. 冷轧钢表面锆盐复合硅烷涂层的性能及结构研究[J]. 材料工程, 2013, 0(4): 50-55,62.
[12] 李文秀, 葛珂宁, 张兵, 陈立峰, 张志刚. 用于分离CH4/CO2疏水性SiO2膜的制备[J]. 材料工程, 2013, (2): 78-82.
[13] 罗凤钻, 吴国友, 邵再东, 程璇, 余煜玺. 常压干燥制备疏水SiO2气凝胶的影响因素分析[J]. 材料工程, 2012, 0(3): 32-37.
[14] 刘培生, 夏凤金, 崔光. 一种具有微纳孔隙结构的二氧化钛多孔膜层光催化系统[J]. 材料工程, 2012, 0(3): 93-96.
[15] 赵荣祥, 李秀萍. 燃烧法快速合成乳白色棒状纳米氧化锌及其光催化研究[J]. 材料工程, 2012, 0(11): 42-46,51.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn