Please wait a minute...
 
材料工程  2014, Vol. 0 Issue (12): 66-71    DOI: 10.11868/j.issn.1001-4381.2014.12.012
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
热轧钛微合金化TRIP钢的组织与性能研究
衣海龙, 徐薇, 龙雷周, 刘振宇, 王国栋
东北大学 轧制技术及连轧自动化国家重点 实验室, 沈阳 110819
Research on Microstructures and Mechanical Properties of Hot Rolled Ti-microalloyed TRIP Steel
YI Hai-long, XU Wei, LONG Lei-zhou, LIU Zhen-yu, WANG Guo-dong
The State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
全文: PDF(5255 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 对钛微合金化TRIP钢进行连续冷却转变曲线的测定,分析轧制与冷却工艺对其组织与性能的影响.结果表明:实验钢的奥氏体/铁素体、奥氏体/马氏体相变点分别在500~650℃和450℃左右;组织由铁素体/贝氏体及少量残余奥氏体组成;随着终轧温度的升高,实验钢的屈服强度和抗拉强度有所降低;随着空冷结束温度的降低,实验钢的屈服强度降低;当终轧温度和空冷结束温度分别为796℃和722℃时,实验钢的屈服强度,抗拉强度和强塑积分别为661,888MPa和25042MPa·%,其对应组织为细小的铁素体及板条贝氏体,铁素体基体上存在大量细小的析出物.
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
衣海龙
徐薇
龙雷周
刘振宇
王国栋
关键词 热轧TRIP钢终轧温度铁素体贝氏体    
Abstract:A Ti-microalloyed TRIP steel was selected, and the continuous cooling transformation curve was measured.The microstructures and mechanical properties of steels were investigated at different rolling and cooling processes. The results show that the austenite/ferrite and austenite/martensite transformation temperature are at about 500-650℃ and 450℃,respectively. The microstructure of steel is composed of ferrite/bainite and a small amount of retained austenite. The yield strength and tensile strength of steel decrease with the increasing of finish rolling temperature. The yield strength of steel decreases with the decreasing of air cooling end temperature. When the finish rolling and air cooling end temperature are 796℃ and 722℃, respectively, and the yield strength, tensile strength and the product of strength and elongation of the steel are 661, 888MPa and 25042MPa·%,respectively. The microstructure is consisted of fine ferrite and lath bainite,and a large number of fine precipitates presents on the ferrite matrix.
Key wordshot rolled TRIP steel    finish rolling temperature    ferrite    bainite
收稿日期: 2013-09-27      出版日期: 2014-12-20
1:  TG115.21+3  
基金资助:国家自然科学基金资助项目(51104046);中央高校基本科研业务费资助项目(N120407001,N120807001)
通讯作者: 衣海龙(1979-),男,副教授,博士,从事专业:材料加工工程,联系地址:辽宁省沈阳市东北大学轧制技术及连轧自动化国家重点实验室(110819)     E-mail: yihl@ral.neu.edu.cn
引用本文:   
衣海龙, 徐薇, 龙雷周, 刘振宇, 王国栋. 热轧钛微合金化TRIP钢的组织与性能研究[J]. 材料工程, 2014, 0(12): 66-71.
YI Hai-long, XU Wei, LONG Lei-zhou, LIU Zhen-yu, WANG Guo-dong. Research on Microstructures and Mechanical Properties of Hot Rolled Ti-microalloyed TRIP Steel. Journal of Materials Engineering, 2014, 0(12): 66-71.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2014.12.012      或      http://jme.biam.ac.cn/CN/Y2014/V0/I12/66
[1] 路洪洲,李斌,吴娥梅,等. 汽车用高强度TRIP钢组织性能及成形工艺[J]. 精密成形工程,2012,4(2):6-9.LU Hong-zhou, LI Bin, WU E-mei, et al. The microstructure properties and forming process of high strength automotive TRIP steel[J]. Journal of Netshape Forming Engineering,2012,4(2):6-9.
[2] 唐代明. TRIP钢TMP和热处理过程中的组织演变[J]. 特殊钢,2007,28(2):36-38.TANG Dai-ming. Advance in research on evolution of structure in TRIP steels during TMP and heat treatment[J]. Special Steel,2007,28(2):36-38.
[3] 张志勤,何立波,高真凤. 国外先进钢铁公司汽车板品种综述[J].武钢技术,2005,43(6):41-46.ZHANG Zhi-qin, HE Li-bo, GAO Zhen-feng. Review of products mix of automobile steel sheet by advanced iron &steel corporations abroad[J]. Wisco Technology,2005,43(6):41-46.
[4] WOLLANTS L, HE Y L, DECOOMAN B C, et al. Review and prospect of high strength low alloy TRIP steel[J]. Acta Metallurgica Sinica:English Letters,2003,16(6):457-465.
[5] DING Wei, GONG Zhi-hua, WANG Bao-feng, et al. Microstructure and mechanical properties of TRIP steel with annealed martensite[J]. Journal of Iron and Steel Research,International,2014,21(5):527-531.
[6] 熊自柳,蔡庆伍,江海涛,等. TRIP钢中奥氏体的力学稳定性研究[J]. 材料工程,2011,(3):11-15.XIONG Zi-liu, CAI Qing-wu, JIANG Hai-tao, et al. Research on mechanical stability of austenite in TRIP steels[J]. Journal of Materials Engineering,2011,(3):11-15.
[7] 定巍,江海涛,唐荻,等. 低硅TRIP钢的力学性能及残余奥氏体稳定性研究[J]. 材料工程,2010,(4):72-75,80.DING Wei, JIANG Hai-tao, TANG Di, et al. Mechanical property and retained austenite of low-Si TRIP steel[J]. Journal of Materials Engineering,2010,(4):72-75,80.
[8] 张迎晖,赵鸿金,康永林. TSCR工艺制备600MPa级TRIP钢的组织与力学性能[J]. 材料工程,2009,(2):51-53,57.ZHANG Ying-hui, ZHAO Hong-jin, KANG Yong-lin. Microstructure and mechanical properties of 600MPa TRIP steel produced by TSCR process[J]. Journal of Materials Engineering,2009,(2):51-53,57.
[9] 郑芳,郑磊,王国栋. 经济型热轧TRIP钢的成分对组织和性能的影响[J].钢铁,2007,42(3):60-64.ZHENG Fang, ZHENG Lei, WANG Guo-dong. Effect of composition of an economical hot-rolled TRIP steel on microstructure and properties[J]. Iron and Steel,2007,42(3):60-64.
[10] PRUGER S, SEUPEL A, KUNA M. A thermomechanically coupled material model for TRIP steel[J]. International Journal of Plasticity,2014,55:182-197.
[11] FENG Qing-xiao, LI Long-fei, YANG Wang-yue, et al. Microstructures and mechanical properties of hot-rolled Nb-microalloyed TRIP steels by different thermo-mechanical[J]. Materials Science and Engineering:A,2014,605:14-21.
[12] HAUSMANN K, KRIZAN D, SPIRADEK H A, et al. The influence of Nb on transformation behavior and mechanical properties of TRIP-assisted bainitic-ferritic sheet[J]. Materials Science and Engineering:A,2013,588:142-150.
[13] 侯晓英,许云波,王业勤,等.含磷和钒热轧TRIP钢组织控制及力学性能研究[J]. 材料科学与工艺,2011,19(5):21-24. HOU Xiao-ying, XU Yun-bo, WANG Ye-qin, et al. Study on microstructure and mechanical properties of hot rolled TRIP steel containing phosphorus and vanadium[J]. Materials Science & Technology,2011,19(5):21-24.
[14] TANG Zheng-you, DING Hua, DING Hao, et al. Effect of baking process on microstructures and mechanical properties of low silicon TRIP steel sheet with niobium[J]. Journal of Iron and Steel Research,International,2010,17(7):68-74.
[15] PERELOMA E V, RUSSELL K F, MILLER M K, et al. Effect of pre-straining and bake hardening on the microstructure of thermomechanically processed CMnSi TRIP steels with and without Nb and Mo additions[J]. Scripta Materialia,2008,58(12):1078-1081.
[16] PERELOMA E V, TIMOKHINA I B, HODGSON P D. Transformation behavior in thermomechanically processed C-Mn-Si TRIP steels with and without Nb[J]. Materials Science and Engineering:A,1999,273-275:448-452.
[1] 邢淑清, 陆恒昌, 麻永林, 韩娜, 李振团, 陈重毅. 800MPa级高强钢焊接粗晶区再热循环的组织转变规律[J]. 材料工程, 2015, 43(7): 93-99.
[2] 李晓林, 蔡庆伍, 赵运堂, 崔阳. Ti和Ti-V微合金化低碳贝氏体钢组织性能及析出行为的研究[J]. 材料工程, 2015, 43(6): 52-59.
[3] 衣海龙, 徐薇, 龙雷周, 刘振宇. 钛微合金化热轧TRIP钢的连续冷却相变研究[J]. 材料工程, 2015, 43(3): 7-11.
[4] 张杰, 闫志峰, 王文先, 王志斌, 王凯, 张红霞, 张心保. 拉-拉循环载荷下443铁素体不锈钢产热规律及疲劳性能预测[J]. 材料工程, 2015, 43(2): 79-84.
[5] 周晓光, 王猛, 刘振宇, 杨浩, 吴迪, 王国栋. 超快冷条件下含Nb钢铁素体相变区析出及模型研究[J]. 材料工程, 2014, 0(9): 1-7.
[6] 吕煜坤, 盛光敏, 尹丽晶. V-N微合金化抗震钢筋铁素体中V(C,N)析出行为分析[J]. 材料工程, 2014, 0(11): 43-49.
[7] 彭宁琦, 唐广波, 刘正东. 奥氏体高温转变区二段冷却速率对铁素体相变的影响[J]. 材料工程, 2013, 0(9): 11-15.
[8] 陈雨来, 董长征, 蔡庆伍, 万德成, 李亮, 齐越. Mo和Ni对高强无碳化物贝氏体钢组织转变与力学性能的影响[J]. 材料工程, 2013, 0(9): 16-21.
[9] 李晓林, 蔡庆伍, 余伟, 张恒磊. N含量对Cr-Mo-V系超低碳贝氏体钢组织性能和析出行为的影响[J]. 材料工程, 2013, 0(3): 16-21,26.
[10] 邵泽斌, 陈海涛, 郎宇平, 朱心昆. 热加工对430铁素体不锈钢“金粉”现象的影响[J]. 材料工程, 2013, 0(3): 61-66.
[11] 赵秀明, 杨金峰, 张永健, 惠卫军, 于同仁, 王章忠. 贝氏体型冷作强化非调质钢的氢致延迟断裂行为[J]. 材料工程, 2012, 0(3): 47-51.
[12] 郑宏伟, 唐荻, 武会宾, 杨柳, 刘丽华. 500MPa级针状铁素体钢的低周疲劳行为[J]. 材料工程, 2012, 0(12): 83-88.
[13] 王立军, 武会宾, 余伟, 蔡庆伍. 直接淬火低碳贝氏体钢的回火组织与力学性能[J]. 材料工程, 2011, 0(3): 36-39,44.
[14] 肖翔, 刘国权, 胡本芙, 胡加学, 康人木, 郑晓. 冷变形对12Cr铁素体/马氏体钢回复与再结晶过程的影响[J]. 材料工程, 2011, 0(2): 73-78.
[15] 曹杰, 阎军, 刘雅政, 章静, 孙维, 于同仁, 柳美玲. 高强度非调质冷镦钢热机轧制实验研究[J]. 材料工程, 2011, 0(11): 35-38.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn