Please wait a minute...
 
材料工程  2014, Vol. 0 Issue (12): 79-85    DOI: 10.11868/j.issn.1001-4381.2014.12.014
  测试与表征 本期目录 | 过刊浏览 | 高级检索 |
Cu,Ag,Ni掺杂TiB2基涂层的结构及韧性研究
王怀勇1,2, 李胜祗1, 郭军2, 王博2, 朱萍2, 黄峰2
1. 安徽工业大学 材料学院, 安徽 马鞍山 243002;
2. 中国科学院 宁波材料技术与工程研究所, 浙江 宁波 315201
Microstructure and Toughness of TiB2 Based Coatings with Cu, Ag and Ni Doped
WANG Huai-yong1,2, LI Sheng-zhi1, GUO Jun2, WANG Bo2, ZHU Ping2, HUANG Feng2
1. College of Materials, Anhui University of Technology, Maanshan 243002, Anhui, China;
2. Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang, China
全文: PDF(5198 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用磁控溅射方法分别掺杂含量约为10%(原子分数)的Cu, Ag, Ni金属,制备出三种TiB2基涂层.利用XRD,SEM分析涂层结构,并通过塑性指数δH、划痕和压痕三种手段对涂层韧性进行表征.结果表明:掺杂金属在涂层中的存在形式不同,导致对涂层晶粒和生长结构的影响不同,其中Ag以晶体形式存在,未发现Cu和Ni的晶相;三种涂层均存在TiB2晶相,Ni和Ag使TiB2晶粒细化,Cu促进晶粒长大;TiB2-Cu和TiB2-Ni涂层为柱状结构,表面存在明显颗粒,而TiB2-Ag涂层柱状结构趋于消失,表面无明显颗粒.结构的不同对涂层的力学性能有明显影响,所有涂层均保持在较高的硬度(>35GPa),三种金属都对涂层韧性有所改善,其中Ni最为显著,Cu和Ag相对较差.
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王怀勇
李胜祗
郭军
王博
朱萍
黄峰
关键词 磁控溅射TiB2-NiTiB2-CuTiB2-Ag划痕韧性    
Abstract:Magnetron co-sputtering method was used to prepare TiB2 based coatings with about 10%(atom fraction) metal (Cu, Ag, Ni) doped.The microstructure of coatings was analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Three methods including plastic parameter δH, scratching and indentation test were used for the toughness characterization. The results show that: three metals exhibite different effects on TiB2 grain size and growth structure due to their different forms of existence in the coatings. In detail, Ag exists as crystals, while Cu and Ni are amorphous; TiB2 grains exist in all coatings, Ni and Ag inhibit grain growth, while Cu promotes; TiB2-Cu and TiB2-Ni coatings present a columnar structure with grains embedded in the surface, and TiB2-Ag coating tends to be column-free without grains. Moreover, these differences on the structure have obviously influence on the mechanical properties. All the coatings remain a high hardness (>35GPa). As compared with pure TiB2 coating,the toughness of three coatings improves with metals doped, the coating with Ni doped is more effective on the improvement of toughness than that with Cu and Ag.
Key wordsmagnetron sputtering    TiB2-Ni    TiB2-Cu    TiB2-Ag    scratch    toughness
收稿日期: 2013-01-21      出版日期: 2014-12-20
1:  O484  
通讯作者: 李胜祗(1955-),男,博士生导师,主要从事金属塑性加工理论和应用研究,联系地址:安徽省马鞍山市湖东路59号安徽工业大学材料学院(243002)     E-mail: lisz55@ahut.edu.cn
引用本文:   
王怀勇, 李胜祗, 郭军, 王博, 朱萍, 黄峰. Cu,Ag,Ni掺杂TiB2基涂层的结构及韧性研究[J]. 材料工程, 2014, 0(12): 79-85.
WANG Huai-yong, LI Sheng-zhi, GUO Jun, WANG Bo, ZHU Ping, HUANG Feng. Microstructure and Toughness of TiB2 Based Coatings with Cu, Ag and Ni Doped. Journal of Materials Engineering, 2014, 0(12): 79-85.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2014.12.014      或      http://jme.biam.ac.cn/CN/Y2014/V0/I12/79
[1] 沈洁, 李冠群, 李玉阁, 等. 靶成分和溅射参数对碳化钒薄膜微结构与力学性能的影响[J]. 无机材料学报,2012,27(5):536-540.SHEN Jie, LI Guan-qun, LI Yu-ge, et al. Effect of target composition and sputtering parameters on microstructure and mechanical properties of vanadium carbide films[J]. Journal of Inorganic Materials,2012,27(5):536-540.
[2] ISHIDA A, OGAWA K, KIMURA T, et al. Structure and properties of Ni-TiC cermet films formed by ion plating[J]. Thin Solid Films,1990,191(1):69-76.
[3] MIINA M, MUSIL J, KADLEC S. Composite TiN-Ni thin films deposited by reactive magnetron sputter ion-plating[J]. Surf Coat Technol,1998,110(3):168-172.
[4] De Los ACROS T, OELHAFEN P, AEBI U, et al. Preparation and characterization of TiN-Ag nanocomposite films[J]. Vacuum,2002,67(3-4):463-470.
[5] 李铸国, 俞海良, 吴毅雄. 低能量离子束辐照磁控溅射沉积超硬质nc-TiN/nc-Cu纳米复合膜[J]. 金属学报,2006,42(9):993-997.LI Z G, YU H L, WU Y X.Superhard nc-TiN/nc-Cu nanocomposite film synthesized by magnetron sputtering with low energy ion flux irradiation[J]. Acta Metallurgica Sinica,2006,42(9):993-997.
[6] KELLY P J, LI H, WHITEFEAD K A, et al. A study of the antimicrobial and tribological properties of TiN/Ag nanocomposite coatings[J]. Surf Coat Technol,2009,204(6-7):1137-1140.
[7] AKBARI A, TEMPLIER C, BEAUFORT M F, et al. Ion beam assisted deposition of TiN-Ni nanocomposite coatings[J]. Surf Coat Technol,2011,206(5):972-975.
[8] ZHANG S, SUN D, FU Y, et al. Ni-toughened nc-TiN/a-SiNx nanocomposite thin films[J]. Surf Coat Technol,2005,200(5-6):1530-1534.
[9] LI Z, MIYAKE S, WU Y. Effects of copper doping on structure and properties of TiN films prepared by magnetron sputtering assisted by low energy ion flux irradiation[J]. Japanese Journal of Applied Physics,2006,45(6A):5178-5182.
[10] MUSIL J, ZEMAN P, HRUBY H, et al. ZrN/Cu nanocomposite film-a novel superhard material[J]. Surf Coat Technol,1999,120-121:179-183.
[11] KARVÁNKOVÁ P, MANNLING H D, EGGS C, et al. Thermal stability of ZrN-Ni and CrN-Ni superhard nanocomposite coatings[J]. Surf Coat Technol,2001,146-147:280-285.
[12] MURRAY J L, LIAO P K, SPEAR K E. The B-Ti (boron-titanium) system[J]. Bull Alloy Phase Diagrams,1986,7(6):550-555.
[13] HOLLECK H W. Advanced concepts of PVD hard coatings[J]. Vacuum,1990,41(7-9):2220-2222.
[14] MUSIL J, KUNC F, ZEMAN H, et al. Relationships between hardness, Young's modulus and elastic recovery in hard nanocomposite coatings[J]. Surf Coat Technol,2002,154(2-3):304-313.
[15] KLUG H P,ALEXANDER L E.X-ray Diffraction Procedures[M].New York:Wiley,1974.
[16] ZHANG S, SUN D, FU Y, et al. Toughness measurement of thin films: a critical review[J]. Surf Coat Technol,2005,198(1-3):74-84.
[17] AKBARI A, TEMPLIER C, BEAUFORT M F, et al. Ion beam assisted deposition of TiN-Ni nanocomposite coatings[J]. Surf Coat Technol,2011,206(5):972-975.
[18] NAKAJIMA H, KOIWA M, MINONISHI Y, et al. Diffusion of cobalt in single crystal alpha-titanium [J]. Trans Jpn Inst Met,1983,24(10):655-660.
[19] GALVAN D, PEI Y T, De HOSSON J. Deformation and failure mechanism of nano-composite coatings under nano-indentation[J]. Surf Coat Technol,2006,200(24):6718-6726.
[20] ZHANG S, ZHANG X. Toughness evaluation of hard coatings and thin films[J]. Thin Solid Films,2012,520(7):2375-2389.
[21] LARSSON M, BROMARK M, HEDENQVIST P, et al. Deposition and mechanical properties of multilayered PVD Ti-TiN coatings[J]. Surf Coat Technol,1995,76-77:202-205.
[22] 龚江宏, 关振铎. 陶瓷材料压痕韧性的统计性质 [J]. 无机材料学报,2002,17(1):96-104. GONG J H, GUAN Z D. Statistical properties of indentation toughness of ceramics[J]. Journal of Inorganic Materials,2002,17(1):96-104.
[23] MILMAN Y V, GALANOV B A, CHUGUNOVA S I. Plasticity characteristic obtained through hardness measurement[J]. Acta Metall Mater,1993,41(9):2523-2532.
[24] LEE G R, KIM H, CHOI H S, et al. Superhard tantalum-nitride films formed by inductively coupled plasma-assisted sputtering [J]. Surf Coat Technol,2007,201(9-11):5207-5210.
[25] 孙荣幸, 张同俊, 戴伟, 等. TiB2和Ti-B-N涂层的性能对比研究 [J]. 材料工程,2006,(4):41-43. SUN R X, ZHANG T J, DAI W,et al. Comparison of properties of TiB2 coatings and Ti-B-N coatings [J]. Journal of Materials Engineering,2006,(4):41-43.
[26] WANG H, WANG B, LI S, et al. Toughening magnetron sputtered TiB2 coatings by Ni addition[J]. Surf Coat Technol, 2013,232(15):767-774.
[27] MUSIL J, VLCEK J. Magnetron sputtering of hard nanocomposite coatings and their properties[J]. Surf Coat Technol,2001,142:557-566.
[28] ZHANG S, WANG H L, ONG S-E, et al. Hard yet tough nanocomposite coatings-present status and future trends[J]. Plasma Processes and Polymers,2007,4(3):219-228.
[1] 许天旱, 冯耀荣. III型载荷分量对不同显微组织套管钻井用钢断裂韧性的影响[J]. 材料工程, 2015, 43(9): 66-73.
[2] 俞树荣, 孟恺, 李淑欣. 空气和腐蚀环境下双相不锈钢SAF2507的疲劳性能[J]. 材料工程, 2015, 43(1): 77-81.
[3] 彭洁, 李子全, 刘劲松, 蒋明, 许奇. 退火温度对Ge/SiO2多层膜的结构和光学性能的影响[J]. 材料工程, 2014, 0(9): 32-38.
[4] 陈枭, 王洪涛, 纪岗昌, 白小波, 王玉伟. 黏结相含量对超音速火焰喷涂TiB2-Ni涂层组织和性能的影响[J]. 材料工程, 2014, 0(3): 34-40,45.
[5] 杨坤, 胡志强, 徐书林, 王海权, 于洋, 刘贵山, 姜妍彦, 张海涛. PET衬底上ITO薄膜的制备及光电性能[J]. 材料工程, 2014, 0(3): 71-76.
[6] 赵淑芳, 喻利花, 马冰洋, 许俊华. 不同Ti含量的W-Ti-N复合膜的微结构及性能研究[J]. 材料工程, 2014, 0(12): 23-27.
[7] 张旋, 钟艳莉, 颜悦, 厉蕾. 聚碳酸酯透明材料表面耐磨涂层的纳米力学性能和耐磨性研究[J]. 材料工程, 2014, 0(1): 79-84.
[8] 喻利花, 苑彩云, 许俊华. 磁控溅射NbSiN复合膜的微结构和性能[J]. 材料工程, 2013, 0(7): 35-39.
[9] 孔德军, 龙丹, 吴永忠, 叶存冬. X80管线钢埋弧焊接头冲击韧性及其断口形貌分析[J]. 材料工程, 2013, 0(6): 50-54.
[10] 潘应晖, 许晓静. Ti6Al4V表面磁控溅射高硬SiC薄膜的摩擦磨损性能[J]. 材料工程, 2013, 0(6): 63-66.
[11] 佘欢, 疏达, 储威, 王俊, 孙宝德. Fe和Si杂质元素对7×××系高强航空铝合金组织及性能的影响[J]. 材料工程, 2013, 0(6): 92-98.
[12] 岳重祥, 白晓虹, 刘东升. 利用TMCP开发F550高强度船板钢的实验研究[J]. 材料工程, 2013, (2): 7-11,28.
[13] 王炯, 李敏, 顾轶卓, 王绍凯, 张佐光. 炭纤维复合材料共固化液体成型工艺及层间性能研究[J]. 材料工程, 2013, (2): 93-98.
[14] 曹晶晶, 陈华辉, 杜飞, 陈功哲. 助熔剂对原位转化炭纤维/氧化铝复合材料组织结构与性能的影响[J]. 材料工程, 2013, 0(12): 54-58.
[15] 许晓静, 盛新兰, 张体峰, 刘敏, 辛喜玲. 磁控溅射掺碳TiB2薄膜的 Raman光谱与摩擦行为[J]. 材料工程, 2012, 0(8): 30-32,38.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn