Please wait a minute...
 
材料工程  2014, Vol. 0 Issue (12): 92-98    DOI: 10.11868/j.issn.1001-4381.2014.12.016
  测试与表征 本期目录 | 过刊浏览 | 高级检索 |
一种新型CMAS耦合条件下热障涂层热循环实验方法
何箐, 吴鹏, 屈轶, 汪瑞军, 王伟平
中国农业机械化科学研究院 表面工程技术研究所, 北京 100083
A Novel Thermal Cycling Test Method for Thermal Barrier Coatings Under CMAS Coupled Condition
HE Qing, WU Peng, QU Yi, WANG Rui-jun, WANG Wei-ping
Surface Engineering Research Institute, Chinese Academy of Agricultural Mechanization Sciences, Beijing 100083, China
全文: PDF(6415 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 提出一种高温度梯度、燃气加热和CMAS(CaO-MgO-Al2O3-SiO2)沉积条件下热障涂层热循环实验方法,并对1200℃下CMAS沉积物对等离子喷涂热障涂层过早失效的影响因素进行讨论和分析.结果表明:无CMAS耦合条件下,热障涂层热循环寿命为573次;CMAS耦合条件下,热障涂层热循环寿命降低至70次.CMAS渗入会导致陶瓷层表层产生致密层和横向微裂纹增多.CMAS耦合条件下,热障涂层的失效以陶瓷层逐层剥离为主.
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何箐
吴鹏
屈轶
汪瑞军
王伟平
关键词 CMAS沉积物热循环高温度梯度热障涂层失效    
Abstract:A thermal cycling test method of thermal barrier coatings(TBCs) under high temperature gradient,gas heating and CMAS(CaO-MgO-Al2O3-SiO2) deposition condition were proposed.The reasons for the early failure of the plasma-sprayed coating with CMAS deposits at 1200℃ were discussed. The results show that, thermal cycling life of TBCs without CMAS deposition is 573 cycles, and thermal cycling life of TBCs with CMAS deposition reduces to 70 cycles. CMAS infiltrates into the surface layer of ceramic coating, forms a dense layer,and transverse cracks increase. The failure of TBCs occurs mainly by peeling of the ceramic layer under CMAS coupled condition.
Key wordsCMAS deposit    thermal cycling    high temperature gradient    thermal barrier coating    failure
收稿日期: 2013-05-06      出版日期: 2014-12-20
1:  TG174.444  
通讯作者: 何箐(1983-),男,博士,高级工程师,主要从事热障涂层方面研究工作,联系地址:北京市朝阳区北沙滩1号49号信箱,中国农业机械化科学研究院表面所(100083)     E-mail: heqing68@gmail.com
引用本文:   
何箐, 吴鹏, 屈轶, 汪瑞军, 王伟平. 一种新型CMAS耦合条件下热障涂层热循环实验方法[J]. 材料工程, 2014, 0(12): 92-98.
HE Qing, WU Peng, QU Yi, WANG Rui-jun, WANG Wei-ping. A Novel Thermal Cycling Test Method for Thermal Barrier Coatings Under CMAS Coupled Condition. Journal of Materials Engineering, 2014, 0(12): 92-98.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2014.12.016      或      http://jme.biam.ac.cn/CN/Y2014/V0/I12/92
[1] RAJENDRAN R. Gas turbine coatings-an overview[J]. Engineering Failure Analysis,2012,26:355-369.
[2] KRÄMER S, FAULHABER S, CHAMBERS M, et al. Mechanisms of cracking and delamination within thick thermal barrier systems in aero-engines subject to calcium-magnesium-alumina-silicate(CMAS) penetration[J]. Materials Science and Engineering:A,2008,490(1):26-35.
[3] LI L, HITCHMAN N, KNAPP J. Failure of thermal barrier coatings subjected to CMAS attack[J]. Journal of Thermal Spray Technology,2010,19(1-2):148-155.
[4] DREXLER J M, GLEDHILL A D, SHINODA K, et al. Jet engine coatings for resisting volcanic ash damage[J]. Advance Materials,2011,23(21):2419-2424.
[5] KRAMER S, YANG J, LEVI C G. Thermo-chemical interaction of thermal barrier coatings with molten CaO-MgO-SiO2-Al2O3 (CMAS) deposits[J]. Journal of the American Ceramic Society,2006,89(10):3167-3175.
[6] MOHAN P, PATTERSON T, YAO B, et al. Degradation of thermal barrier coatings by fuel impurities and CMAS: thermochemical interactions and mitigation approaches[J]. Journal of Thermal Spray Technology,2010,19(1-2):156-167.
[7] DREXLER J M, CHEN C H, GLEDHILL A D, et al. Plasma sprayed gadolinium zirconate thermal barrier coatings that are resistant to damage by molten Ca-Mg-Al-silicate glass[J]. Surface and Coatings Technology,2012,206(19-20):3911-3916.
[8] CHEN X. Calcium-magnesium-alumina-silicate (CMAS) delamination mechanisms in EB-PVD thermal barrier coatings[J]. Surface and Coatings Technology,2006,200(11):3418-3427.
[9] 何箐, 刘新基, 柳波, 等. CMAS渗入对等离子喷涂YSZ热障涂层形貌的影响[J]. 中国表面工程,2012,25(4):42-48.HE Q, LIU X J, LIU B, et al. Influence of CMAS infiltration on microstructure of plasma-sprayed YSZ thermal barrier coating[J]. China Surface Engineering,2012,25(4):42-48.
[10] STILGER M J, YANAR N M, TOPPING M G, et al. Thermal barrier coatings for the 21st century[J]. Zeitschr Metallk,1999,90(12):1069-1078.
[11] MARTENA M, BOTTO D, FINO P, et al. Modelling of TBC system failure: stress distribution as a function of TGO thickness and thermal expansion mismatch[J]. Engineering Failure Analysis,2006,13(3):409-426.
[12] 宫声凯, 邓亮, 徐惠彬. 陶瓷热障涂层制备技术及发展趋势[J]. 材料导报,1999,13(6):31-34. GONG S K, DENG L, XU H B. Recent development in preparation techniques of thermal barrier coatings[J]. Materials Review,1999,13(6):31-34.
[13] EVANS A G, HUTCHINSON W J. The mechanics of coating delamination in thermal gradients[J]. Surface and Coating Technology,2007,201(18):7905-7916.
[1] 王亚杰, 王波, 张龙, 马宏毅. 玻璃纤维-铝合金正交层板的拉伸性能研究[J]. 材料工程, 2015, 43(9): 60-65.
[2] 张志强, 李国禄, 王海斗. 基于统计分析的等离子喷涂层接触疲劳寿命和失效模式[J]. 材料工程, 2015, 43(8): 77-83.
[3] 邢淑清, 陆恒昌, 麻永林, 韩娜, 李振团, 陈重毅. 800MPa级高强钢焊接粗晶区再热循环的组织转变规律[J]. 材料工程, 2015, 43(7): 93-99.
[4] 董慧民, 安学锋, 益小苏, 闫丽, 苏正涛, 包建文. 纤维增强聚合物基复合材料低速冲击研究进展[J]. 材料工程, 2015, 43(5): 89-100.
[5] 贺世美, 熊翔, 何利民. 新型Yb2SiO5环境障涂层1400℃高温氧化行为[J]. 材料工程, 2015, 43(4): 37-41.
[6] 刘正, 董阳, 毛萍莉, 于金程. 轧制AZ31镁合金板材(4mm)动态压缩性能与失效行为[J]. 材料工程, 2015, 43(2): 61-66.
[7] 李允伟, 李卫平, 刘慧丛, 曹瑞, 朱立群. 憎水膜层在大气暴露和模拟积水环境中的失效行为研究[J]. 材料工程, 2014, 0(8): 79-85.
[8] 黄亮亮, 孟惠民, 唐静. 纳米结构热障涂层研究进展[J]. 材料工程, 2014, 0(8): 105-114.
[9] 齐红宇, 马立强, 李少林, 杨晓光, 王亚梅, 魏洪亮. 等离子热障涂层构件高温热疲劳寿命预测研究[J]. 材料工程, 2014, 0(7): 67-72.
[10] 董建民, 李嘉荣, 牟仁德, 赵金乾, 史振学, 刘世忠. 高温热处理对带热障涂层DD6单晶高温合金互扩散行为及持久断裂特征的影响[J]. 材料工程, 2014, 0(6): 51-55.
[11] 何箐, 屈轶, 汪瑞军, 王伟平. DZ40M合金表面纳米和垂直裂纹结构热障涂层的抗燃气热腐蚀性能[J]. 材料工程, 2014, 0(5): 66-72.
[12] 蔡登安, 周光明, 王新峰, 钱元, 刘伟先. 双向玻纤织物复合材料双轴拉伸载荷下的力学行为[J]. 材料工程, 2014, 0(5): 73-77.
[13] 马志远, 罗忠兵, 林莉. 基于RVM表征热障涂层孔隙率与孔隙形貌对超声纵波声速的影响[J]. 材料工程, 2014, 0(5): 86-90.
[14] 张亮, 韩继光, 何成文, 郭永环, 张剑. 热循环对SnAgCu(纳米Al)/Cu焊点界面与性能影响[J]. 材料工程, 2014, 0(3): 55-59.
[15] 范金娟, 常振东, 陶春虎, 王富耻. Si/Mullite/Er2SiO5新型环境障涂层的1350℃氧化行为[J]. 材料工程, 2014, 0(10): 90-95.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn