Please wait a minute...
 
材料工程  2014, Vol. 0 Issue (12): 104-113    DOI: 10.11868/j.issn.1001-4381.2014.12.018
  综述 本期目录 | 过刊浏览 | 高级检索 |
汽车车身用6000系铝合金板材微观组织与热处理工艺的研究进展
贾志宏1, 丁立鹏1, 吴赛楠1, 王雪丽1, 刘庆1, 陈昌云2
1. 重庆大学 材料科学与工程学院, 重庆 400044;
2. 西南铝业(集团)有限公司, 重庆 401326
Research Progress on Microstructure and Heat Treatment of 6000 Series Aluminum Alloys Sheet for Automotive Body
JIA Zhi-hong1, DING Li-peng1, WU Sai-nan1, WANG Xue-li1, LIU Qing1, CHEN Chang-yun2
1. College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China;
2. Southwest Aluminum(group) Co., Ltd., Chongqing 401326, China
全文: PDF(675 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 本文介绍了6000系铝合金在汽车车身上的应用现状及其性能特点,并详细论述了该系合金的时效析出特征、强化机理、织构演化和合金元素对性能的影响.此外,分析了6000系铝合金的传统热处理工艺,阐述了固溶后预时效和预变形对合金烘烤硬化性的影响,并探讨了汽车车身用6000系铝合金目前存在的问题及当前的主要研究方向.
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
贾志宏
丁立鹏
吴赛楠
王雪丽
刘庆
陈昌云
关键词 6000系铝合金轻量化烘烤强化析出相    
Abstract:The properties and application status of 6000 series aluminum alloys in automotive body panel were introduced. Besides, the precipitation behavior, strengthening mechanism, texture evolution and the influence of alloying element to properties were also discussed in detail. Additionally, the conventional heat treatment and the effect of pre-aging or pre-straining to bake hardening were described. Then some current problems and research directions about 6000 series aluminum alloys for automotive body were discussed.
Key words6000 series aluminum alloy    light weight    bake hardening    precipitate
收稿日期: 2013-05-08      出版日期: 2014-12-20
1:  TG146.2  
基金资助:中央高校基本科研业务费项目资助(CDJZR13130045)
通讯作者: 贾志宏(1974-),男,博士,教授,从事专业:材料微观结构,联系地址:重庆市沙坪坝区沙正街174号重庆大学材料科学与工程学院(400044)     E-mail: zhihongjia@cqu.edu.cn
引用本文:   
贾志宏, 丁立鹏, 吴赛楠, 王雪丽, 刘庆, 陈昌云. 汽车车身用6000系铝合金板材微观组织与热处理工艺的研究进展[J]. 材料工程, 2014, 0(12): 104-113.
JIA Zhi-hong, DING Li-peng, WU Sai-nan, WANG Xue-li, LIU Qing, CHEN Chang-yun. Research Progress on Microstructure and Heat Treatment of 6000 Series Aluminum Alloys Sheet for Automotive Body. Journal of Materials Engineering, 2014, 0(12): 104-113.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2014.12.018      或      http://jme.biam.ac.cn/CN/Y2014/V0/I12/104
[1] MILLERA W S, ZHUANG L, BOTTEMA J, et al. Recent development in aluminium alloys for the automotive industry[J]. Materials Science and Engineering:A,2000,280(1):37-49.
[2] HUNG N, MARION M. Improved formability of aluminum alloys using laser induced hardening of tailored heat treated blanks[J].Physics Procedia,2012,39:318-326.
[3] DAVIDKOV A, PETROV R H, BLIZNUK V, et al. Microstructure and hemming properties of AA6016 aluminum alloy sheets[J]. Key Engineering Materials,2011,465:451-454.
[4] ROMETSCH P A, CAO L F, XIONG X Y, et al. Atom probe analysis of early-stage strengthening behaviour in an Al-Mg-Si-Cu alloy[J]. Ultramicroscopy,2011,111(6):690-694.
[5] CAO L, ROMETSCH P A, RCOUPE M J. Clustering behaviour in an Al-Mg-Si-Cu alloy during natural ageing and subsequent under-ageing[J]. Materials Science and Engineering:A,2013,559(1):257-261.
[6] SEYEDREZAI H, GREBENNIKOV D, MASCHER P, et al. Study of the early stages of clustering in Al-Mg-Si alloys using the electrical resistivity measurements[J]. Materials Science and Engineering:A,2009,525(1-2):186-191.
[7] MARIOARA C D, ANDERSEN S J, STENE T N, et al. The effect of Cu on precipitation in Al-Mg-Si alloys[J]. Philosophical Magazine,2007,87(23):3385-3413.
[8] TORSAETER M, LEFEBVRE W, MARIOARA C D, et al. Study of intergrown L and Q' precipitates in Al-Mg-Si-Cu alloys[J]. Scripta Materialia,2011,64(9):817-820.
[9] KIM J, MARIOARA C D, HOLMESTAD R, et al. Effects of Cu and Ag additions on age-hardening behavior during multi-step aging in Al-Mg-Si alloys[J]. Materials Science and Engineering: A,2013,560(10):154-162.
[10] TORSAETER M, EHLERS F J H, MARIOARA C D, et al. Applying precipitate-host lattice coherency for compositional determination of precipitates in Al-Mg-Si-Cu alloys[J]. Philosophical Magazine,2012,92(31):3833-3856.
[11] SERIZAWA A, HIROSAWA S, SATO T. Three-dimensional atom probe characterization of nanoclusters responsible for multistep aging behavior of an Al-Mg-Si alloy[J]. Metallurgical and Materials Transactions A,2008,39(2):243-251.
[12] TEICHMANN K, MARIOARA C D, ANDERSEN S J, et al. The effect of preaging deformation on the precipitation behavior of an Al-Mg-Si alloy[J]. Metallurgical and Materials Transactions A,2012,43(11):4006-4014.
[13] SHEN C H. Pre-treatment to improve the bake-hardening response in the naturally aged Al-Mg-Si alloy [J]. Journal of Materials Science and Technology,2011,27(3):205-212.
[14] MASUDA T, TAKAKI Y, SAKURAI T, et al. Combined effect of pre-straining and pre-aging on bake-hardening behavior of an Al-0.6 mass%Mg-1.0 mass%Si alloy[J].Materials Transactions,2010,51(2):325-332.
[15] FRIDLYANDER I N, SISTE V G, GRUSHKO O E, et al. Aluminium alloys promising materials[J]. Metal Science and Heat Treatment,2002,44(9-10):365-370.
[16] TAKEO S. The latest trends in aluminum alloy sheets for automotive body panels[J]. Kobelco Technology Review,2008,(28):22-28.
[17] MUKHOPADHYAY P. Alloy designation, processing, and use of AA6XXX series aluminium alloys[J]. ISRN Metallurgy, 2012,2012:1-15.
[18] PEROVIC A, PEROVIC D D, WEATHERLY G C, et al. Precipitation in aluminium alloys AA6111 and AA6016[J]. Scripta Materialia,1999,41(9):703-708.
[19] KAMAT R G, BUTLERUTLER J F, MURTHA S J, et al. Alloy 6022-T4E29 for automotive sheet applications[J]. Materials Science Forum,2002,396-402:1591-1596.
[20] CAO L, ROMATSCH P A, COUPER M J. Effect of pre-ageing and natural ageing on the paint bake response of alloy AA6181A[J]. Materials Science and Engineering:A,2013,571(1):77-82.
[21] ENGLER O, HIRSCH J. Texture control by thermomechanical processing of AA6xxx Al-Mg-Si sheet alloys for automotive applications—a review[J]. Materials Science and Engineering:A,2002,336(1-2):249-262.
[22] DAVIES G. Materials for Automobile Bodies[M].Oxford:Butterworth-Heinemann Ltd,2003.89-90.
[23] MARIOARA C D, ANDERSEN S J, ZANDBERGEN H W, et al.The influence of alloy composition on precipitates of the Al-Mg-Si system[J]. Metallurgical and Materials Transactions A, 2005,36(3):691-702.
[24] KOVÁCS I, LENDVAI J, NAGY E. The mechanism of clustering in supersaturated solid solutions of A1-Mg2Si alloys[J]. Acta Metallurgica,1972,20(7):975-983.
[25] CHANG C S T, BANHART J. Low-temperature differential scanning calorimetry of an Al-Mg-Si alloy[J]. Metallurgical and Materials Transactions A,2011,42(7):1960-1964.
[26] MURAYAMA M, HONO K, MIAO W F, et al. The effect of Cu additions on the precipitation kinetics in an Al-Mg-Si alloy with excess Si[J]. Metallurgical and Materials Transactions A, 2001,32(2):239-246.
[27] MATSUDA K, IKENO S, GAMADA H, et al. High-resolution electron microscopy on the structure of guinier-preston zones in an Al-1.6 mass Pct Mg2Si alloy[J]. Metallurgical and Materials Transactions A,1998,29(4):1161-1167.
[28] MARIOARA C D, ANDERSEN S J, JANSEN J, et al. Atomic model for GP-zones in a 6082 Al-Mg-Si system[J].Acta Materialia,2001,49(2):321-328.
[29] CHEN J H, COSTAN E, HUIS M, et al. Atomic pillar-based nanoprecipitates strengthen AlMgSi alloys[J].Science,2006,312(5772):416-419.
[30] HASTING H S, FROSETH A G, ANDERSEN S J, et al. Composition of β" precipitates in Al-Mg-Si alloys by atom probe tomography and first principles calculations[J].Journal of Applied Physics,2009,106(12):123527.
[31] ZANDBERGEN H W. Structure determination of Mg5Si6 particles in Al by dymamic electron diffraction studies[J].Science, 1997,277(5330):1221-1225.
[32] VISSER R, HUIS M A, JANSEN J, et al. The crystal structure of the β' phase in Al-Mg-Si alloys[J]. Acta Materialia, 2007,55(11):3815-3823.
[33] MATSUDA K, SAKAGUCHI Y, MIYATA Y, et al. Precipitation sequence of various kinds of metastable phases in Al-1.0mass% Mg2Si-0.4mass% Si alloy[J]. Journal of Materials Science,2000,35(1):179-189.
[34] EDWARDS G A, STILLE K, DUNLOP G L, et al. The precipitation sequence in Al-Mg-Si alloys[J]. Acta Materialia,1998,46(11):3893-3904.
[35] 陈江华, 刘春辉. AlMgSi(Cu)合金中纳米析出相的结构演变[J].中国有色金属学报,2011,21(10):2352-2360. CHEN J H, LIU C H. Microstructure evolution of precipitates in AlMgSi(Cu) alloys[J]. The Chinese Journal of Nonferrous Metals,2011,21(10):2352-2360.
[36] ARDELL A J. Precipitation hardening[J]. Metallurgical Transactions A,1985,16(12):2131-2165.
[37] OROWAN E. Symposium on Internal Stresses in Metals and Alloys[M].London:Institute of Metals,1948.451-453.
[38] NIE J F, MUDDLE B C, POLMEAR I J. The effect of precipitate shape and orientation on dispersion strengthening in high strength aluminium alloys[J]. Materials Science Forum,1996,217-222:1257-1262.
[39] SERIZAWA A, SATO T, POOLE W J. The characterization of dislocation-nanocluster interactions in Al-Mg-Si(-Cu/Ag) alloys[J]. Philosophical Magazine Letters,2010,90(4):279-287.
[40] TEICHMANN K, MARIOARA C D, ANDERSEN S J, et al. TEM study of β' precipitate interaction mechanisms with dislocations and β' interfaces with the aluminium matrix in Al-Mg-Si alloys[J]. Materials Characterization,2013,75:1-7.
[41] POOLE W J, WANG X, LLOYD D J, et al. The shearable-non-shearable transition in Al-Mg-Si-Cu precipitation hardening alloys: implications on the distribution of slip, work hardening and fracture[J]. Philosophical Magazine,2005,85(26-27):3113-3135.
[42] GUPTAA A K, LOYDA D J, COURTB S A. Precipitation hardening in Al-Mg-Si alloys with and without excess Si[J]. Materials Science and Engineering:A,2001,316(1-2):11-17.
[43] WENNER S, MARIOARA C D, ANDERSEN S J, et al. Effect of room temperature storage time on precipitation in Al-Mg-Si(-Cu) alloys with different Mg/Si ratio[J]. International Journal of Materials Research,2012,103(8):948-952.
[44] EHLER J H, WENNER S, ANDERSEN J S, et al. The role of the Si network to the stabilization of hardening precipitates in the Al-Mg-Si-Cu alloy system. Proceeding of 13th International Conference on Aluminium Alloy. Hoboken:John Wiley & Sons,Inc,2012.279-284.
[45] CAYRON C, BUFFAT P A.Transmission electron microscopy study of the β' phase(Al-Mg-Si alloys) and QC phase(Al-Cu-Mg-Ag alloys): ordering mechanism and crystallographic structure[J]. Acta Materialia,2000,48(10):2639-2653.
[46] CHAKRABARTI D J, LAUGHLIN D E. Phase relations and precipitation in Al-Mg-Si alloys with Cu additions[J]. Progress in Materials Science,2004,49(3-4):389-410.
[47] ESMAEILI S. Effect of composition on clustering reactions in AlMgSi(Cu) alloys[J]. Scripta Materialia,2004,50(1):155-158.
[48] PRINCE K C, MARTIN J W. The effects of dispersoids upon the micromechanisms of crack propagation in Al-Mg-Si alloys[J]. Acta Metallurgica,1979,27(8):1401-1408.
[49] HAN Y, MA K, LI L, et al. Study on microstructure and mechanical properties of Al-Mg-Si-Cu alloy with high manganese content[J]. Materials & Design,2012,39:418-424.
[50] KUIJPERS N C W, VERMOLEN F J, VUIK C, et al. The dependence of the β-AlFeSi to α-Al(FeMn)Si transformation kinetics in Al-Mg-Si alloys on the alloying elements[J]. Materials Science and Engineering:A,2005,394(1-2):9-19.
[51] JI S, YANG W, GAO F, et al. Effect of iron on the microstructure and mechanical property of Al-Mg-Si-Mn and Al-Mg-Si diecast alloys[J]. Materials Science and Engineering:A,2013,564:130-139.
[52] MATSUDA K, IKENO S, SATO T, et al. New quaternary grain boundary precipitate in Al-Mg-Si alloy containing silver[J]. Scripta Materialia,2006,55(2):127-129.
[53] 王小宁, 李世晨, 郑子樵,等. Ag对汽车车身板用6022合金组织和性能的影响[J]. 中国有色金属学报,2010,20(8):1527-1532. WANG X N, LI S C, ZHENG Z Q, et al. Effect of Ag on microstructure and properties of 6022 aluminum alloy for automotive body sheets[J]. The Chinese Journal of Nonferrous Metals, 2010,20(8):1527-1532.
[54] CHAPELLE S D L. Cube recrystallization textures in a hot deformed Al-Mg-Si alloy[J]. Scripta Materialia,2001,45(12):1387-1391.
[55] ENGLER O, KONG X W, LÜCKE K. Recrystallisation texture of particle-containing Al-Cu and Al-Mn single crystals[J]. Acta Materialia,2001,49(10):1701-1715.
[56] BENNETT T A, PETROV R H, KESTENS L A I, et al. The effect of particle-stimulated nucleation on texture banding in an aluminium alloy[J].Scripta Materialia,2010,63(5):461-464.
[57] HIRSCH J, SAMMAN T. Superior light metals by texture engineering: optimized aluminum and magnesium alloys for automotive applications[J]. Acta Materialia,2013,61(3):818-843.
[58] EL-DANAF E A, SOLIMAN M S, ALMAJID A A. Effect of solution heat treatment on the hot workability of Al-Mg-Si alloy[J]. Materials and Manufacturing Processes,2009,24(6):637-643.
[59] GARRETT R, LIN J, DEAN T. An investigation of the effects of solution heat treatment on mechanical properties for AA 6xxx alloys: experimentation and modelling[J]. International Journal of Plasticity,2005,21(8):1640-1657.
[60] MORGENEYER T F, STARINK M J, WANG S C, et al. Quench sensitivity of toughness in an Al alloy: direct observation and analysis of failure initiation at the precipitate-free zone[J]. Acta Materialia,2008,56(12):2872-2884.
[61] SHANG B C, YIN Z M, WANG G, et al. Investigation of quench sensitivity and transformation kinetics during isothermal treatment in 6082 aluminum alloy[J]. Materials & Design, 2011,32(2):3818-3822.
[62] ZHUANG L, HAAN R, BOTTEMA J, et al. Improvement in bake hardening response of Al-Si-Mg alloys[J]. Materials Science Forum,2000,331-337:1309-1314.
[63] BRYANT J D. The effects of preaging treatments on aging kinetics and mechanical properties in AA6111 aluminum autobody sheet[J]. Metallurgical and Materials Transactions A,1999,30(8):1999-2006.
[64] PASHLE D W, JACOBS M H, VIETZ J T. The basic processes affecting two-step ageing in an Al-Mg-Si alloy[J]. Philosophical Magazine,1967,16(139):51-76.
[65] BANHART J, LAY M D H, CHANG C S T, et al. Kinetics of natural aging in Al-Mg-Si alloys studied by positron annihilation lifetime spectroscopy[J]. Physical Review B,2011,83:014101-13.
[66] LAY M D H, ZUROB H S, HUTCHINSON C R, et al. Vacancy behavior and solute cluster growth during natural aging of an Al-Mg-Si alloy[J]. Metallurgical and Materials Transactions A,2012,43(12):4507-4513.
[67] MURAYAMA M, HONO K. Pre-precipitate clusters and precipitation processes in Al-Mg-Si alloys[J]. Acta Materialia, 1999,47(5):1537-1548.
[68] ZHEN L, KANG S B. The effect of pre-aging on microstructure and tensile properties of Al-Mg-Si alloys[J]. Scripta Materialia, 1997,36(10):1089-1094.
[69] BIROL Y. Pre-aging to improve bake hardening in a twin-roll cast Al-Mg-Si alloy[J]. Materials Science and Engineering:A,2005,391(1-2):175-180.
[70] SAITO T,SMURAISHI S,MARIOARA C D,et al.The effects of low Cu additions and predeformation on the precipitation in a 6060Al-Mg-Si alloy[J].Metallurgical and Materials Transactions A,2013,44(9):1-12.
[71] YASSAR R S, FIELD D P, WEILAND H. The effect of cold deformation on the kinetics of the β" precipitates in an Al-Mg-Si alloy[J].Metallurgical and Materials Transactions A,2005,36(8):2059-2065.
[72] BIROL Y. Pre-straining to improve the bake hardening response of a twin-roll cast Al-Mg-Si alloy[J]. Scripta Materialia,2005,52(3):169-173.
[73] 徐欢欢, 张志清, 吴赛楠,等. 预应变和预时效对Al-Mg-Si 合金烘烤硬化性能的影响[J].中国有色金属学报,2013,23(3):623-627. XU H H, ZHANG Z Q, WU S N, et al. Effect of pre-straining and pre-ageing on bake hardening response of Al-Mg-Si alloy[J]. The Chinese Journal of Nonferrous Metals,2013,23(3):623-627.
[74] SERIZAWA A, SATO T, MILLER M K. Effect of cold rolling on the formation and distribution of nanoclusters during pre-aging in an Al-Mg-Si alloy[J]. Materials Science and Engineering:A,2013,561:492-497.
[75] DAVIDKOV A, PETROV R H, BLIZNUK V,et al. Microstructure and hemming properties of AA6016 aluminum alloy sheets[J]. Key Engineering Materials,2011,465:451-454.
[1] 冯柳, 周邦新, 彭剑超, 王均安. RPV模拟钢中纳米富Cu析出相的复杂晶体结构表征[J]. 材料工程, 2015, 43(7): 80-86.
[2] 李晓林, 蔡庆伍, 赵运堂, 崔阳. Ti和Ti-V微合金化低碳贝氏体钢组织性能及析出行为的研究[J]. 材料工程, 2015, 43(6): 52-59.
[3] 赵新宝, 党莹樱, 尹宏飞, 鲁金涛, 袁勇, 崔传勇, 谷月峰. 超超临界电站用镍铁基高温合金TCP相和碳化物相析出的热力学计算[J]. 材料工程, 2015, 43(5): 38-43.
[4] 辛星, 张新明, 刘胜胆, 宋丰轩, 陈彬. 回归再时效中预时效温度对7050铝合金应力腐蚀性能的影响[J]. 材料工程, 2014, 0(5): 29-34.
[5] 李晓林, 蔡庆伍, 余伟, 张恒磊. N含量对Cr-Mo-V系超低碳贝氏体钢组织性能和析出行为的影响[J]. 材料工程, 2013, 0(3): 16-21,26.
[6] 雷贻文, 孙荣禄, 唐英. 钛合金表面激光熔覆Ni基合金涂层中析出相热力学模拟计算[J]. 材料工程, 2013, 0(10): 36-40,47.
[7] 雒设计, 郑新侠. 敏化处理对2205双相不锈钢组织与力学性能的影响[J]. 材料工程, 2011, 0(5): 76-80.
[8] 李新梅, 邹勇, 张忠文, 邹增大. 新型耐热钢Super304H高温时效后的组织与性能[J]. 材料工程, 2009, 0(5): 38-42.
[9] 付书红, 董建新, 张麦仓, 谢锡善. 发展高稳定性718合金的热力学模拟计算[J]. 材料工程, 2009, 0(11): 8-13.
[10] 张坤, 戴圣龙, 黄敏, 颜鸣皋. 长时间热暴露对Al-Cu-Mg-Ag合金微观组织的影响[J]. 材料工程, 2007, 0(11): 15-19.
[11] 董建新, 李昂, 张麦仓. GH586高温合金析出相的热力学模拟计算[J]. 材料工程, 2003, 0(9): 7-10.
[12] 王卫国, 周邦新, 刘曙光, 李卫军. 高温退火Fe-Cr基减振合金的阻尼性能与晶界析出相[J]. 材料工程, 2002, 0(9): 3-6,25.
[13] 刘瑛, 邓波, 陈淦生, 仲增墉. 析出相在GH907低膨胀合金中的作用[J]. 材料工程, 1997, 0(11): 27-30.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn