Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (9): 116-122    DOI: 10.11868/j.issn.1001-4381.2015.000649
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
Zn对铸态Mg-Y-Nd-Zr合金组织和力学性能的影响
苏再军1,2, 杨树忠2, 刘楚明2, 杨新华2, 刘先兰3
1 邵阳学院 机械与能源工程学院, 湖南 邵阳 422000;
2 中南大学 材料科学与工程学院, 长沙 410083;
3 湖南工学院 机械工程学院, 湖南 衡阳 421002
Effects of Zn on Microstructure and Mechanical Properties of As-cast Mg-Y-Nd-Zr Alloys
SU Zai-jun1,2, YANG Shu-zhong2, LIU Chu-ming2, YANG Xin-hua2, LIU Xian-lan3
1 Department of Mechanical and Energy Engineering, Shaoyang University, Shaoyang 422000, Hunan, China;
2 School of Materials Science and Engineering, Central South University, Changsha 410083, China;
3 Department of Mechanical Engineering, Hunan Institute of Technology, Hengyang 421002, Hunan, China
全文: PDF(4622 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用光学显微镜(OM)、扫描电子显微镜(SEM)、X射线衍射分析及力学性能测试等研究Zn元素对Mg-Y-Nd-Zr铸态合金显微组织及力学性能的影响。结果表明:随着Zn含量的增加,Mg-Y-Nd-Zr-xZn(x=0.0%,0.5%,1.0%,1.5%,质量分数)合金的晶粒逐渐细化,平均晶粒尺寸由(57±0.8)μm细化至(30±0.3)μm,晶界处共晶相的体积分数也逐渐增加。Mg-Y-Nd-Zr铸态合金中主要存在Mg12Nd相和Mg24Y5相,加入0.5% Zn后,合金中出现Mg12YZn相。随Zn含量的增加,Mg12YZn相的体积分数不断增大,合金的力学性能逐渐提高。当Zn含量为1.0%时,合金具有最优的力学性能,其抗拉强度、屈服强度和伸长率分别为(208±5.9),(159±3.9) MPa和(7.5±0.2)%,较未加Zn的合金分别提高了18,42MPa和1.2%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
苏再军
杨树忠
刘楚明
杨新华
刘先兰
关键词 Mg-Y-Nd-Zr合金Zn显微组织力学性能    
Abstract:Effects of Zn on microstructure and mechanical properties of Mg-Y-Nd-Zr as-cast alloys were investigated by the optical microscopy(OM), scanning electron microscopy(SEM), X-ray diffractometry(XRD) and the mechanical properties test. The results show that the grain size of Mg-Y-Nd-Zr-xZn(x=0.0%, 0.5%, 1.0%, 1.5%,mass fraction)alloys is greatly refined with the increase of Zn content, which is refined from (57±0.8)μm to (30±0.3)μm. The volume fraction of eutectic structure at grain boundary increases gradually. Mg12Nd phase and Mg24Y5 phase exist mainly in Mg-Y-Nd-Zr as-cast alloy. With the addition of 0.5%Zn, Mg12YZn phase appears at the grain boundary. With the increase of Zn, the volume fraction of Mg12YZn phase and the mechanical properties of the alloys increases gradually. The alloy containing 1.0%Zn exhibits the optimal mechanical properties, the ultimate tensile strength, yield strength and elongation are (208±5.9), (159±3.9)MPa and (7.5±0.2)%, respectively; comparing with the alloy without the addition of Zn, the ultimate tensile strength, yield strength and elongation increase by 18, 42MPa and 1.2%.
Key wordsMg-Y-Nd-Zr alloy    Zn    microstructure    mechanical property
收稿日期: 2015-05-22      出版日期: 2017-09-16
中图分类号:  TG146.2  
通讯作者: 刘楚明(1960-),男,博士,教授,从事有色金属材料性能、组织及加工工艺研究,联系地址:湖南省长沙市岳麓区中南大学本部材料科学与工程学院(410083),E-mail:cmliu@mail.csu.edu.cn     E-mail: cmliu@mail.csu.edu.cn
引用本文:   
苏再军, 杨树忠, 刘楚明, 杨新华, 刘先兰. Zn对铸态Mg-Y-Nd-Zr合金组织和力学性能的影响[J]. 材料工程, 2017, 45(9): 116-122.
SU Zai-jun, YANG Shu-zhong, LIU Chu-ming, YANG Xin-hua, LIU Xian-lan. Effects of Zn on Microstructure and Mechanical Properties of As-cast Mg-Y-Nd-Zr Alloys. Journal of Materials Engineering, 2017, 45(9): 116-122.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.000649      或      http://jme.biam.ac.cn/CN/Y2017/V45/I9/116
[1] FRIEDRICH H E,MORDIKE B L. Magnesium technology[M]. Berlin Heidelberg:Springer,2006.
[2] 唐甜,张丁非,孙静,等.Sn对时效态ZM61镁合金高温力学性能的影响[J]. 材料工程,2016,44(11):9-15. TANG T,ZHANG D F,SUN J,et al. Effects of Sn on elevated-temperature mechanical properties of as-aged ZM61 alloy[J]. Journal of Materials Engineering,2016,44(11):9-15.
[3] 陈振华.耐热镁合金[M].北京:化学工业出版社,2007.
[4] WANG X,LIU C M,XU L,et al. Microstructure and mechanical properties of the hot-rolled Mg-Y-Nd-Zr alloy[J].Journal of Materials Research,2013,28(10):1386-1393.
[5] WU Y J,XU C,ZHENG F Y,et al. Formation and characterization of microstructure of as-cast Mg-6Gd-4Y-xZn-0.5Zr(x=0.3, 0.5 and 0.7wt.%) alloys[J]. Materials Characterization,2013,79(5):93-99.
[6] ZHANG J H,XU L J,JIAO Y F,et al. Study of Mg-Ymm-Zn alloys with high-strength at elevated temperatures processed by water-cooled mold casting[J]. Materials Science & Engineering:A,2014,610(29):139-144.
[7] CHE C J,CHENG L R,TONG L B,et al. The effect of Gd and Zn additions on microstructures and mechanical properties of Mg-4Sm-3Nd-Zr alloy[J]. Journal of Alloys and Compounds,2017,706:526-537.
[8] ZHANG Z Q,LIU X,HU,W Y,et al. Microstructures, mechanical properties and corrosion behaviors of Mg-Y-Zn-Zr alloys with specific Y/Zn mole ratios[J].Journal of Alloys and Compounds,2015,624(3):116-125.
[9] ZHU Y M,MORTON A J,NIE J F.The 18R and 14H long-period stacking ordered structures in Mg-Y-Zn alloys[J].Acta Materialia,2010,58(8):2936-2947.
[10] 刘楚明,朱秀荣,周海涛.镁合金相图集[M].长沙:中南大学出版社,2006.
[11] SU Z J,LIU C M,WAN Y C. Microstructures and mechanical properties of high performance Mg-4Y-2.4Nd-0.2Zn-0.4Zr alloy[J]. Materials & Design,2013,45(3):466-472.
[12] LI D J,ZENG X Q,DONG J,et al. Microstructure evolution of Mg-10Gd-3Y-1.2Zn-0.4Zr alloy during heat-treatment at 773K[J].Journal of Alloys and Compounds,2009,468(1/2):164-169.
[13] YIN D D,WANG Q D,GAO Y,et al. Effects of heat treatments on microstructure and mechanical properties of Mg-11Y-5Gd-2Zn-0.5Zr (wt.%) alloy[J].Journal of Alloys and Compounds,2011,509(5):1696-1704.
[14] ITOI T,SEIMIYA T,KAWAMURA Y,et al. Long period stacking structures observed in Mg97Zn1Y2 alloy[J].Scripta Materialia,2004,51(2):107-111.
[15] XU C,ZHENG M Y,WU K,et al. Effect of cooling rate on the microstructure evolution and mechanical properties of homogenized Mg-Gd-Y-Zn-Zr alloy[J].Materials Science and Engineering:A,2013,599(1):364-370.
[16] LI M,ZHANG K,LI X G,et al. Effect of Zn on the microstructure and mechanical properties of as-cast Mg-7Gd-3Y-1Nd-0.5Zr alloy[J].Materials Science and Engineering:A,2015,638(25):46-53.
[17] WILSON D V,CHAPMAN J A.Effects of preferred orientation on the grain size dependence of yield strength in metals[J].Philosophical Magazine,1963,8(93):1543-1551.
[18] MA C J,LIU M P,WU G H,et.al.Tensile properties of extruded ZK60-RE alloys[J]. Materials Science and Engineering:A,2003,349(1/2):207-212.
[19] YANG J,WANG J L,WANG L D,et al.Microstructure and mechanical properties of Mg-4.5Zn-xNd (x=0,1 and 2, wt%) alloys[J].Materials Science and Engineering:A,2008,479(1/2):339-344.
[20] GAO Y,WANG Q,GU J,et al.Comparison of microstructure in Mg-10Y-5Gd-0.5Zr and Mg-10Y-5Gd-2Zn-0.5Zr alloys by conventional casting[J].Journal of Alloys and Compounds,2009,477(1/2):374-378.
[21] 黄正华,刘汪涵博,戚文军,等.第三组元对Mg-Sn合金铸态组织与力学性能的影响[J].材料工程,2016,44(6):56-62. HUANG Z H, LIU W H B, QI W J, et al. Effect of third constituent on as-cast microstructures and mechanical properties of Mg-Sn alloy[J]. Journal of Materials Engineering,2016,44(6):56-62.
[22] SHAO X H,YANG Z Q,MA X L.Strengthening and toughening mechanisms in Mg-Zn-Y alloy with a long period stacking ordered structure[J].Acta Materialia,2010,58(14):4760-4771.
[23] WANG J F, SONG P F, HUANG S,et al. High-strength and good-ductility Mg-RE-Zn-Mn magnesium alloy with long-period stacking ordered phase[J].Materials Letters,2013,93(15):415-418.
[1] 梁秀兵, 程江波, 冯源, 陈永雄, 徐滨士. 铁基非晶涂层的研究进展[J]. 材料工程, 2017, 45(9): 1-12.
[2] 李娜, 马兆昆, 陈铭, 宋怀河, 李昂, 贾月荣. 石墨烯/聚酰亚胺复合石墨纤维的结构与性能[J]. 材料工程, 2017, 45(9): 31-37.
[3] 赵海涛, 马瑞廷, 刘瑞萍. 热分解法制备Ni0.5Zn0.5Fe2O4纳米颗粒[J]. 材料工程, 2017, 45(9): 81-85.
[4] 杨旭东, 陈亚军, 师春生, 赵乃勤. 球磨工艺对原位合成碳纳米管增强铝基复合材料微观组织和力学性能的影响[J]. 材料工程, 2017, 45(9): 93-100.
[5] 刘涛, 赵小如, 蒋显武. 退火条件对Sn掺杂ZnO薄膜光电性能的影响[J]. 材料工程, 2017, 45(8): 19-23.
[6] 熊俊杰, 闫洪. Al-Ti体系原位合成Al3Ti/ADC12复合材料[J]. 材料工程, 2017, 45(8): 30-37.
[7] 刘皓, 李克智. 两种双基体C/C复合材料的微观结构与力学性能[J]. 材料工程, 2017, 45(8): 38-42.
[8] 张显峰, 陆政, 高文理, 曹亚雷, 冯朝辉. 2A66铝锂合金板材各向异性研究[J]. 材料工程, 2017, 45(7): 7-12.
[9] 靳磊, 崔向中, 王纯, 周国栋, 姜春竹, 李其连, 杨璟. 钇硅酸盐材料力学性能的第一性原理研究[J]. 材料工程, 2017, 45(7): 48-53.
[10] 武美荣, 魏智强, 武晓娟, 杨华, 姜金龙. Zn1-xMnxS稀磁半导体的合成与光学性能[J]. 材料工程, 2017, 45(7): 54-59.
[11] 吴深, 樊江磊, 刘建秀, 高红霞, 孙爱芝. NiZnFe2O4包覆铁基软磁复合材料的制备及性能[J]. 材料工程, 2017, 45(7): 60-65.
[12] 樊振中, 熊艳才, 陆政, 孙刚, 王胜强. Al-7Sn-1.1Ni-Cu-0.2Ti轴承合金微观组织与力学性能[J]. 材料工程, 2017, 45(6): 8-16.
[13] 刘占勇, 左孝青, 钟子龙, 李威威. 半固态触变挤压对ZA27合金组织和力学性能的影响[J]. 材料工程, 2017, 45(6): 17-23.
[14] 刁仲驰, 姚泽坤, 申景园, 刘瑞, 郭鸿镇. TC18钛合金的超塑性行为与变形机制[J]. 材料工程, 2017, 45(5): 80-85.
[15] 潘晖, 赵海生. 镍基钎料钎焊K465高温合金大间隙接头组织与性能研究[J]. 材料工程, 2017, 45(5): 86-93.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn