Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (12): 83-87    DOI: 10.11868/j.issn.1001-4381.2015.001357
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
沸石基锂离子电池隔膜的制备及性能
张红涛, 尚华, 顾波, 张恒源
华北水利水电大学 电力学院, 郑州 450011
Preparation and Performances of Zeolite-based Separator for Lithium-ion Batteries
ZHANG Hong-tao, SHANG Hua, GU Bo, ZHANG Heng-yuan
School of Electric Power, North China University of Water Resources and Electric Power, Zhengzhou 450011, China
全文: PDF(1906 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 针对传统聚烯烃类锂电隔膜的耐温性差和电解液亲和性差的问题,以沸石粒子、硅溶胶和乙二胺四乙酸为主要原料,通过烧结工艺制备综合性能优异的沸石基锂离子电池隔膜。结果表明:与商用聚乙烯膜相比,本实验制备的沸石隔膜具有发达的孔道结构,其耐热性和电解液润湿性得到显著提升;经过160℃,0.5h的热处理后,沸石隔膜的热收缩率为0,而聚乙烯膜已经完全融化,沸石隔膜的电解液接触角接近0°,聚乙烯膜的接触角高达35°。受益于良好的孔道结构和电解液亲和性,沸石隔膜所装配电池在倍率放电容量和循环放电容量等方面均优于传统聚烯烃膜。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张红涛
尚华
顾波
张恒源
关键词 锂离子电池沸石隔膜耐温性电解液润湿性电化学性能    
Abstract:To improve the poor thermal stability and electrolyte wettability of polyolefin-based separators, a high performance zeolite-based separator was prepared by a sintering process using zeolite particles, silica sol and ethylenediamine tetraacetic acid. The results show that compared with PE separator, the as-prepared zeolite separator exhibits well-developed microstructure superior thermal resistance and excellent liquid electrolyte wettability; the present separator has almost no thermal shrinkage after the heat treatment at 160℃ for 0.5h, while PE separator shows 100% thermal shrinkage under the same condition. Moreover, the electrolyte contact angle of zeolite separator is about 0±, while that of PE separator reaches 35°. Based on the above advantages, the zeolite separator shows better electrochemical performances, such as the discharge C-rate capability and cycling performance, as compared to the commercialized PE separator.
Key wordslithium-ion battery    zeolite separator    thermal resistance    liquid electrolyte wettability    electrochemical property
收稿日期: 2015-11-06      出版日期: 2017-12-19
中图分类号:  TM912.9  
通讯作者: 张红涛(1977-),男,博士,教授,主要从事功能隔膜材料方面的研究工作,联系地址:河南省郑州市北环路36号华北水利水电大学电力学院(450011),E-mail:39583633@qq.com     E-mail: 39583633@qq.com
引用本文:   
张红涛, 尚华, 顾波, 张恒源. 沸石基锂离子电池隔膜的制备及性能[J]. 材料工程, 2017, 45(12): 83-87.
ZHANG Hong-tao, SHANG Hua, GU Bo, ZHANG Heng-yuan. Preparation and Performances of Zeolite-based Separator for Lithium-ion Batteries. Journal of Materials Engineering, 2017, 45(12): 83-87.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.001357      或      http://jme.biam.ac.cn/CN/Y2017/V45/I12/83
[1] ARORA P, ZHANG Z M. Battery separators[J]. Chemical Reviews, 2004, 104(10):4419-4462.
[2] 孙美玲, 唐浩林, 潘牧. 动力锂离子电池隔膜的研究进展[J]. 材料导报A, 2011, 25(5):44-50. SUN M L, TANG H L, PAN M. A review on the separators of power Li-ion batteries[J]. Materials Review A, 2011, 25(5):44-50.
[3] LEE H, YANILMAZ M, TOPRAKCI O, et al. A review of recent developments in membrane separators for rechargeable lithium-ion batteries[J]. Energy & Environmental Science, 2014, 7(12):3857-3886.
[4] CHOI N S, CHEN Z H, FREUNBERGER S A, et al. Challenges facing lithium batteries and electrical double-layer capacitors[J]. Angewandte Chemie International Edition, 2012, 51(40):9994-10024.
[5] LI H, WANG Z, CHEN L, et al. Research on advanced materials for Li-ion batteries[J]. Advanced Materials, 2009, 21(45):4593-4607.
[6] 黄可龙, 王兆翔, 刘素琴. 锂离子电池原理与关键技术[M]. 北京:化学工业出版社, 2007:336-340. HUANG K L, WANG Z X, LIU S Q. Principle and key technology of lithium ion battery[M]. Beijing:Chemical Industry Press, 2007:336-340.
[7] GOODENOUGH J B, PARK K S. The Li-ion rechargeable battery:a perspective[J]. Journal of the American Chemical Society, 2013, 135(4):1167-1176.
[8] 孙海翔, 李文轩, 李鹏, 等. 动力锂离子二次电池聚偏氟乙烯隔膜的制备及性能表征[J]. 化工学报, 2013, 64(7):2556-2564. SUN H X, LI W X, LI P, et al. Preparation and characterization of poly(vinylidene fluoride) separator for power lithium-ion battery[J]. CIESC Journal, 2013, 64(7):2556-2564.
[9] RYOU M H, LEE Y M, PARK J K, et al. Mussel-inspired polydopamine-treated polyethylene separators for high-power Li-ion batteries[J]. Advanced Materials, 2011, 23(27):3066-3070.
[10] FANG L F, SHI J L, ZHU B K, et al. Facile introduction of polyether chains onto polypropylene separators and its application in lithium ion batteries[J]. Journal of Membrane Science, 2013,448:143-150.
[11] JUNG Y S, CAVANAGH A S, GEDVILAS L, et al. Improved functionality of lithium-ion batteries enabled by atomic layer deposition on the porous microstructure of polymer separators and coating electrodes[J]. Advanced Energy Materials, 2012, 2(8):1022-1027.
[12] CROCE F, SETTIMI L, SCROSATI B. Superacid ZrO2-added, composite polymer electrolytes with improved transport properties[J]. Electrochemistry Communications, 2006, 8(2):364-368.
[13] CHOI E S, LEE S Y. Particle size-dependent, tunable porous structure of a SiO2/poly (vinylidene fluoride-hexafluoropropylene)-coated poly (ethylene terephthalate) nonwoven composite separator for a lithium-ion battery[J]. Journal of Materials Chemistry, 2011, 21(38):14747-14754.
[14] ZHANG P, CHEN L X, SHI C, et al. Development and characterization of silica tube-coated separator for lithium ion batteries[J]. Journal of Power Sources, 2015, 284:10-15.
[15] 陈静娟. 多孔无机膜的制备及其用于锂离子电池的研究[D]. 广州:华南理工大学, 2014. CHEN J J. Preparation of porous inorganic membrane and its application in lithium ion battery[D]. Guangzhou:South China University of Technology, 2014.
[16] XIANG H F, CHEN J J, LI Z, et al. An inorganic membrane as a separator for lithium-ion battery[J]. Journal of Power Sources, 2011, 196(20):8651-8655.
[17] CHEN J J, WANG S Q, CAI D D, et al. Porous SiO2 as a separator to improve the electrochemical performance of spinel LiMn2O4 cathode[J]. Journal of Membrane Science, 2014, 449:169-175.
[18] CHOI J, GHOSH S, KING L, et al. MFI zeolite membranes from a-and randomly oriented monolayers[J]. Adsorption, 2006, 12(5/6):339-360.
[1] 崔超婕, 田佳瑞, 杨周飞, 金鹰, 董卓娅, 谢青, 张刚, 叶珍珍, 王瑾, 刘莎, 骞伟中. 石墨烯在锂离子电池和超级电容器中的应用展望[J]. 材料工程, 2019, 47(5): 1-9.
[2] 常增花, 王建涛, 李文进, 武兆辉, 卢世刚. 锂离子电池硅基负极界面反应的研究进展[J]. 材料工程, 2019, 47(2): 11-25.
[3] 李高锋, 李智敏, 宁涛, 张茂林, 闫养希, 向黔新. 锂离子电池正极材料表面包覆改性研究进展[J]. 材料工程, 2018, 46(9): 23-30.
[4] 李诗杰, 张继刚, 李金晓, 韩奎华, 韩旭东, 路春美. 超级电容器用马尾藻基超级活性炭的制备及其电化学性能[J]. 材料工程, 2018, 46(7): 157-164.
[5] 杨朝, 杨金萍, 王静, 姚少巍, 刘刚. 空心球Fe3O4&海绵状碳复合材料制备及其电化学性能表征[J]. 材料工程, 2018, 46(6): 43-50.
[6] 南文争, 燕绍九, 彭思侃, 张晓艳, 刘大博, 戴圣龙. 磷酸铁锂/石墨烯复合材料的合成及电化学性能[J]. 材料工程, 2018, 46(4): 43-50.
[7] 王一博, 赵九蓬. 3D打印柔性可穿戴锂离子电池[J]. 材料工程, 2018, 46(3): 13-21.
[8] 巩桂芬, 王磊, 兰健. EVOH-SO3Li/PET电纺锂离子电池隔膜电化学性能[J]. 材料工程, 2018, 46(3): 7-12.
[9] 邓凌峰, 覃昱焜, 彭辉艳, 连晓辉, 吴义强. 高温还原GO制备LiFePO4/石墨烯复合正极材料及表征[J]. 材料工程, 2018, 46(2): 9-15.
[10] 辛兆鹏, 方伟, 赵雷, 何漩, 陈辉, 李薇馨, 孙志敏. 液相泡沫复合微波活化技术制备分级多孔泡沫碳及电化学性能[J]. 材料工程, 2018, 46(11): 63-70.
[11] 李可峰, 尹晓燕. 聚苯醚纳米纤维锂电隔膜的制备[J]. 材料工程, 2018, 46(10): 120-126.
[12] 刘珍红, 孙晓刚, 陈珑, 邱治文, 蔡满园. 碳纳米管纸/纳米硅复合电极的锂离子电池性能[J]. 材料工程, 2018, 46(1): 99-105.
[13] 袁琦, 邹正光, 万振东, 韩世昌. 锂离子电池正极材料铁掺杂V6O13的制备及电化学性能[J]. 材料工程, 2018, 46(1): 106-113.
[14] 许健, 竺培显, 韩朝辉, 曹勇, 周生刚. 表面处理对碳纤维基β-PbO2电极性能的影响[J]. 材料工程, 2018, 46(1): 125-132.
[15] 姜贵文, 黄菊花. 膨胀石墨/石蜡复合材料的制备及热管理性能[J]. 材料工程, 2017, 45(7): 41-47.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn