Please wait a minute...
 
材料工程  2015, Vol. 43 Issue (2): 61-66    DOI: 10.11868/j.issn.1001-4381.2015.02.010
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
轧制AZ31镁合金板材(4mm)动态压缩性能与失效行为
刘正, 董阳, 毛萍莉, 于金程
沈阳工业大学 材料科学与工程学院, 沈阳 110870
Dynamic Compressive Properties and Failure Behaviour of Rolled AZ31 Magnesium Alloy Sheet (4mm)
LIU Zheng, DONG Yang, MAO Ping-li, YU Jin-cheng
School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
全文: PDF(4248 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 为了研究轧制AZ31镁合金板材(4mm)在高应变速率下的动态力学性能和失效行为,采用分离式霍普金森压杆装置(SHPB)在室温下应变速率为500~2600s-1范围内对其进行了动态压缩实验,并利用金相显微镜(OM)和扫描电镜(SM)对冲击后的试样进行了显微分析.探讨了轧制AZ31镁合金板材沿轧制方向(RD)、横向(TD)和法向(ND)的动态压缩性能和失效行为.结果表明:轧制AZ31镁合金4mm板材动态压缩性能存在各向异性.沿RD和TD方向压缩的动态性能相同,沿ND方向压缩的动态断裂强度最大.AZ31镁合金4mm板材的动态压缩断裂机制为解理断裂.变形机制为沿RD和TD方向高速压缩时,{1012}〈1120〉拉伸孪晶参与变形;沿ND方向高速压缩时,{1011}〈1120〉压缩孪晶参与变形.
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘正
董阳
毛萍莉
于金程
关键词 AZ31镁合金SHPB高应变速率动态力学性能失效行为    
Abstract:To investigate the dynamic compressive properties and failure behaviour of the rolled AZ31 magnesium alloy sheet (4mm), the dynamic compressive test was carried out using split Hopkinson pressure bar(SHPB) at ambient temperature under the strain rates from 500s-1 to 2600s-1.The compressed specimens were analyzed by metallographic microscope and scanning electron microscope. The dynamic compressive properties and failure behaviour of the rolled AZ31 magnesium alloy sheet (4mm) along rolling direction(RD), transverse direction(TD) and normal direction(ND) were discussed. The results show that the dynamic mechanical properties of the rolled AZ31 magnesium alloy sheet (4mm) exhibit strong anisotropy. The properties along RD and TD are similar while the dynamic strength along ND is the largest. The dynamic compressive fracture mechanism of the rolled AZ31 magnesium alloy sheet (4mm) is cleavage fracture. The deformation mechanism is that tensile twinning {1012}〈1120〉 are activated along RD and TD compression; compressive twinning {1011}〈1120〉 are activated along ND compression.
Key wordsAZ31 magnesium alloy    SHPB    high strain rate    dynamic mechanical property    failure behavior
收稿日期: 2013-04-03     
1:  TG146.2+2  
基金资助:国家重点基础研究计划(973计划)项目资助(2013CB632205);辽宁省科学技术计划项目资助(201202160)
通讯作者: 刘正(1957-),男,教授,博士,主要从事高性能镁合金及其应用等方面的研究工作,联系地址:沈阳经济技术开发区沈辽西路111号(110870), E-mail: zliu4321@vip.sina.com     E-mail: zliu4321@vip.sina.com
引用本文:   
刘正, 董阳, 毛萍莉, 于金程. 轧制AZ31镁合金板材(4mm)动态压缩性能与失效行为[J]. 材料工程, 2015, 43(2): 61-66.
LIU Zheng, DONG Yang, MAO Ping-li, YU Jin-cheng. Dynamic Compressive Properties and Failure Behaviour of Rolled AZ31 Magnesium Alloy Sheet (4mm). Journal of Materials Engineering, 2015, 43(2): 61-66.
链接本文:  
http://jme.biam.ac.cn/jme/CN/10.11868/j.issn.1001-4381.2015.02.010      或      http://jme.biam.ac.cn/jme/CN/Y2015/V43/I2/61
[1] 刘正, 王越, 王中光, 等. 镁基轻质材料的研究与应用[J]. 材料研究学报, 2000, 14(5):449-456. LIU Z, WANG Y, WANG Z G, et al. Developing trends of research and application of magnesium alloys[J]. Chinese Journal of Material Research, 2000, 14(5):449-456.
[2] 陈力禾, 赵慧杰, 刘正,等. 镁合金压铸及其在汽车工业中的应用[J]. 铸造, 1999,(10):45-50.CHEN L H, ZHAO H J, LIU Z, et al. Die casting of magnesium alloy and its application in automobile industry[J]. Foundry, 1999,(10):45-50.
[3] 黎文献.镁及镁合金[M].长沙:中南大学出版社,2005.97-102.LI W X.Magnesium and Magnesium Alloy[M].Changsha:Central South University Press,2005.97-102.
[4] 张青来, 卢晨, 朱燕萍. 轧制方式对AZ31镁合金薄板组织和性能的影响[J]. 中国有色金属学报, 2004,14(3):391-397.ZHANG Q L, LU C, ZHU Y P. Effect of rolling method on microstructure and properties of AZ31 magnesium alloy thin sheet[J]. The Chinese Journal of Nonferrous Metals, 2004,14(3):391-397.
[5] MUKAI T, WATANABE H, HIGASHI K. Application of superplasticity in commercial magnesium alloy for fabrication of structural components[J]. Material Science and Technology, 2000,16(11-12):1314-1319.
[6] KIM W J, CHUNG S W, KUM D. Superplasticity in thin magnesium alloy sheets and deformation mechanism maps for magnesium alloys at elevated temperatures[J]. Acta Mater, 2001,49(20):3337-3345.
[7] 李峰, 桑玉博, 赵立伟. 热变形对AZ31镁合金显微组织的影响[J]. 热加工工艺, 2006,35(6):8-9.LI F, SANG Y B, ZHAO L W. Influence of hot deformation on microstructure of AZ31 alloy[J]. Hot Working Technology, 2006,35(6):8-9.
[8] 吴远志, 严红革, 陈吉华, 等. AZ31镁合金高应变速率多向锻造组织演变及力学性能[J]. 中国有色金属学报, 2012,22(11):3000-3005.WU Y Z, YAN H G, CHEN J H, et al. Microstructure evolution and mechanical properties of AZ31 magnesium alloy fabricated by high strain rate triaxial-forging[J]. The Chinese Journal of Nonferrous Metals, 2012,22(11):3000-3005.
[9] 范永革, 汪凌云. 镁合金AZ31B的高温塑性变形及加工图[J]. 中国有色金属学报, 2004,14(7):1068-1072.FAN Y G, WANG L Y. Plastic deformation at elevated temperature and processing maps of magnesium alloy[J]. The Chinese Journal of Nonferrous Metals, 2004,14(7):1068-1072.
[10] 刘晓霏, 严巍, 陈国学. AZ31B镁合金塑性变形动态再结晶的实验研究[J]. 塑性工程学报, 2005,12(3):10-13. LIU X F, YAN W, CHEN G X. The experimental study on recrystallization of magnesium alloy AZ31B during plastic deformation[J]. Journal of Plasticity Engineering, 2005,12(3):10-13.
[11] 刘楚明, 刘子娟, 朱秀荣. 镁及镁合金动态再结晶研究进展[J]. 中国有色金属学报, 2006,16(1):1-12. LIU C M, LIU Z J, ZHU X R. Research and development progress of dynamic recrystallization in pure magnesium and its alloys[J]. The Chinese Journal of Nonferrous Metals, 2006,16(1):1-12.
[12] 张凯锋, 尹德良, 韩文波. 热轧AZ31镁合金温变形中的微观组织演变[J]. 航空学报, 2005,26(4):505-509. ZHANG K F, YIN D L, HAN W B. Microstructure evolution in warm deformation of hot-rolled AZ31 Mg alloy [J]. Acta Aeronautica et Astronautica Sinica, 2005,26(4):505-509.
[13] WATANABE H, TSUTSUI H, MUKAI T, et al. Deformation mechanisms in a coarse grained Mg-Al-Zn alloy at elevated temperatures[J]. International Journal of Plasticity, 2001, 17(3): 387-397.
[14] LEE S, CHEN Y H, WANG J Y. Isothermal sheet formability of magnesium alloy AZ31 and AZ61[J]. Journal of Material Processing Technology, 2002,124(1/2):19-24.
[15] TOZAWA Y. Deep drawing of magnesium alloy sheets[J]. Japan Inst Light Metals, 2011, 51(10): 492-497.
[16] DOEGE E, DRODER K. Processing of magnesium sheet metals by deep drawing and stretch forming[J]. Mat Tech,1997,(7-8): 19-23.
[17] 张凯锋, 尹德良, 吴德忠. AZ31镁合金板的热拉伸性能[J]. 中国有色金属学报, 2003,13(6):1505-1509. ZHANG K F, YIN D L, WU D Z. Deep drawability of AZ31 magnesium alloy sheets at elevated temperatures [J]. The Chinese Journal of Nonferrous Metals, 2003,13(6):1505-1509.
[18] 苌群峰, 李大永, 彭颖红. AZ31镁合金板材温热冲压数值模拟与实验研究[J]. 中国有色金属学报,2006,16(4):580-585. CHANG Q F, LI D Y, PENG Y H. Numerical simulation and experimental study of warm deep drawing of AZ31 magnesium alloy sheet [J]. The Chinese Journal of Nonferrous Metals, 2006,16(4):580-585.
[19] 才鸿年, 谭成文, 王富耻, 等. 装甲用镁合金抗弹性能表征体系探讨[J]. 中国工程科学, 2006,(2):30-33. CAI H N, TAN C W, WANG F C, et al. The characterization system of the ballistic performance of armor magnesium alloys[J]. Engineering Science, 2006,(2):30-33.
[20] MUKAI A, DAYAN D, PITCHURE D, et al. Dynamic mechanical analysis of pure Mg and AZ31 alloy[A].Magnesium Technology[C].Warrendale: Minerals, Metals & Materials, 2004.103-106.
[21] KOICHI ISHIKAWA, HIROYUKI WATANABE, TOSHIJI MUKAI. High strain rate deformation behavior of an AZ91 magnesium alloy at elevated temperatures[J]. Materials Letters, 2005,59(12):1511-1515.
[22] PARK S W, ZHOU M. Separation of elastic waves in split Hopkinson bars using one-point strain measurements [J].Experimental Mechanics, 1999,39(4):287-294.
[23] 宋力, 胡时胜. SHPB数据处理中的二波法与三波法 [J].爆炸与冲击, 2005,25(4):368-373. SONG L, HU S S. Two-wave and three-wave method in SHPB data processing[J]. Explosion and Shock Waves, 2005,25(4):368-373.
[24] 宋博, 宋立, 胡时胜. SHPB 实验数据处理的解耦方法[J].爆炸与冲击, 1998,18(2):167-171. SONG B, SONG L, HU S S. Coupling solved method of SHPB experimental data processing[J]. Explosion and Shock Waves,1998,18(2):167-171.
[25] 杨扬, 程信林.绝热剪切的研究现状及发展趋势[J].中国有色金属学报, 2002,12(3):402-407. YANG Y, CHENG X L. Current status and trends in researches on adiabatic shearing [J].The Chinese Journal of Nonferrous Metals, 2002,12(3):402-407.
[26] 陈振华, 夏伟军, 程永奇, 等. 镁合金织构与各向异性[J]. 中国有色金属学报,2005,15(1):1-11. CHEN Z H, XIA W J, CHENG Y Q, et al. Texture and anisotropy in magnesium alloys [J]. The Chinese Journal of Nonferrous Metals, 2005,15(1):1-11.
[1] 初雅杰, 李晓泉, 吴申庆, 徐振钦, 杜舜尧. 热压形变参数对AZ31镁合金接头微观组织和力学性能的影响[J]. 材料工程, 2014, 0(6): 35-39.
[2] 毛萍莉, 席通, 刘正, 董阳, 刘遵鑫, 邸金南. 高应变率下AZ31镁合金焊接接头动态力学性能[J]. 材料工程, 2014, 0(5): 53-58.
[3] 任国成, 赵国群. AZ31镁合金等通道转角挤压应变累积均匀性分析及组织性能研究[J]. 材料工程, 2013, 0(10): 13-19.
[4] 邓娟利, 赵晓莉, 周传哲, 黎德育, 李宁. AZ31镁合金表面浸锌过程中混合电势与覆盖度关系研究[J]. 材料工程, 2012, 0(9): 19-22,27.
[5] 刘海燕, 宋卫东, 栗建桥. 钨合金动态力学性能的三维数值模拟研究[J]. 材料工程, 2012, 0(6): 71-75.
[6] 刘君, 郭学锋, 张忠明, 叶永南. 工艺参数对AZ31镁合金往复挤压过程的影响[J]. 材料工程, 2012, 0(5): 70-75.
[7] 薛文斌, 陈廷芳, 李永良, 邹志锋, 刘晓龙, 赵衍华. AZ31镁合金搅拌摩擦焊接头微弧氧化表面防护研究[J]. 材料工程, 2012, 0(12): 1-6.
[8] 郝敏, 黄艳华, 苏正涛, 王景鹤. 苯基硅橡胶的动态力学性能研究[J]. 材料工程, 2012, 0(10): 35-38,53.
[9] 江盛玲, 谷晓昱, 张志远. 聚苯硫醚/羟基改性多壁碳纳米管复合材料动态力学行为研究[J]. 材料工程, 2011, 0(6): 77-80.
[10] 刘劲松, 王祺, 肖寒, 张士宏. AZ31镁合金型材温热弯曲实验研究[J]. 材料工程, 2011, 0(3): 20-23.
[11] 彭建, 周绸, 陶健全, 潘复生. AZ31与AZ61异种镁合金的TIG焊研究[J]. 材料工程, 2011, 0(2): 46-51.
[12] 胥广亮, 陈国清, 周文龙, 付雪松, 任晓, 孙中刚. 等径角挤压对AZ31镁合金组织及力学性能的影响[J]. 材料工程, 2011, 0(2): 69-72.
[13] 张丁非, 徐杏杏, 兰伟, 戴庆伟, 齐福刚. AZ31镁合金轧制工艺的研究[J]. 材料工程, 2011, 0(11): 68-73.
[14] 周国华, 曾效舒, 张湛, 徐强, 罗超. 挤压温度对等径角挤压碳纳米管增强AZ31镁基复合材料显微组织的影响[J]. 材料工程, 2009, 0(9): 20-23.
[15] 李淑萍, 李克智, 李玉龙, 袁秦鲁, 沈学涛. 冲击载荷损伤后C/C复合材料烧蚀性能的研究[J]. 材料工程, 2009, 0(3): 37-40.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn