Please wait a minute...
 
材料工程  2015, Vol. 43 Issue (3): 106-112    DOI: 10.11868/j.issn.1001-4381.2015.03.018
  综述 本期目录 | 过刊浏览 | 高级检索 |
高性能树脂基复合材料典型空天环境下动态力学行为研究现状
高禹1, 王钊1, 陆春1, 包建文2, 宋恩鹏3, 董尚利4
1. 沈阳航空航天大学 辽宁省通用航空重点实验室, 沈阳 110136;
2. 北京航空材料研究院 先进复合材料国防重点实验室, 北京 100095;
3. 沈阳飞机设计研究所 综合强度部, 沈阳 110035;
4. 哈尔滨工业大学 材料科学与工程学院, 哈尔滨 150001
State of Arts of the Dynamic Mechanical Behaviors of High Performance Polymer Composites in Typical Aerospace Environments
GAO Yu1, WANG Zhao1, LU Chun1, BAO Jian-wen2, SONG En-peng3, DONG Shang-li4
1. Liaoning Key Laboratory of General Aviation, Shenyang Aerospace University, Shenyang 110136, China;
2. Science and Technology on Advanced Composites Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095, China;
3. Shenyang Aircraft Design & Research Institute, Shenyang 110035, China;
4. School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
全文: PDF(789 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 随着飞行器结构中碳纤维增强树脂基复合材料用量的迅速增加,其应用范围从非主承力构件逐渐扩展到主承力构件,复合材料结构中的疲劳、低速冲击和高速撞击等动态力学问题已经引起了国内外研究者的广泛关注。本文综述了典型空天环境因素与碳纤维增强树脂基复合材料的交互作用,重点探讨了其在疲劳、低速冲击和高速撞击载荷作用下的行为,简述了环境损伤与动态载荷耦合对碳纤维增强树脂基复合材料动态力学性能的影响,以期为聚合物基复合材料在空天飞行器上的应用提供有益的参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高禹
王钊
陆春
包建文
宋恩鹏
董尚利
关键词 树脂基复合材料环境损伤动态力学行为断裂老化    
Abstract:With the rapid increase of carbon fiber reinforced resin matrix composites used in aircraft structure, their application gradually extends from non-load-bearing components to load-bearing components. The dynamic mechanical problems of the composite structures that are subjected to fatigue, low velocity impact and high velocity impact have attracted broad attention from both domestic and foreign researchers. The interactions between typical aerospace environmental factors with carbon fiber reinforced resin matrix composites are summarized. The behaviors of the composites under fatigue loading, low velocity impact and high velocity impact was mainly discussed. The effect of coupling between environment damage and dynamic load on dynamic mechanical properties of carbon fiber reinforced resin matrix composites are described. The aim of this work is to provide beneficial reference for the application of polymer matrix composites in aerospace vehicles.
Key wordspolymer-matrix composites    environmental damage    dynamic mechanical behavior    fracture    ageing
收稿日期: 2013-04-15     
1:  V45  
基金资助:国家自然科学基金项目(51373102,51073094);航空科学基金项目(2011ZF54019);辽宁省高等学校杰出青年学者成长计划项目(LJQ2011013);辽宁省"百千万人才工程"项目(2012921043);沈阳市人才专项基金(2012081203019)
通讯作者: 高禹(1971-),男,教授/博士,主要从事先进碳纤维/树脂基复合材料在空间环境因素作用下损伤效应及机理的研究,联系地址:辽宁省沈阳市沈北新区道义南大街37号沈阳航空航天大学航空航天工程学部(110136),gaoyu@sau.edu.cn     E-mail: gaoyu@sau.edu.cn
引用本文:   
高禹, 王钊, 陆春, 包建文, 宋恩鹏, 董尚利. 高性能树脂基复合材料典型空天环境下动态力学行为研究现状[J]. 材料工程, 2015, 43(3): 106-112.
GAO Yu, WANG Zhao, LU Chun, BAO Jian-wen, SONG En-peng, DONG Shang-li. State of Arts of the Dynamic Mechanical Behaviors of High Performance Polymer Composites in Typical Aerospace Environments. Journal of Materials Engineering, 2015, 43(3): 106-112.
链接本文:  
http://jme.biam.ac.cn/jme/CN/10.11868/j.issn.1001-4381.2015.03.018      或      http://jme.biam.ac.cn/jme/CN/Y2015/V43/I3/106
[1] 张小达.国外运载器、航天器从地面到空间自然环境标准综述[J].航天标准化, 2001, (1):29-33.ZHANG X D. Review the foreign carrier, the spacecraft standard from the ground to the space on the natural environment[J]. Aerospace Standardization, 2001, (1):29-33.
[2] 都亨, 叶宗海. 中国空间环境研究发展-空间物理前沿进展[M].北京:气象出版社, 1998.1-15.DU H, YE Z H. Chinese Space Environment Research and Development-advances in Space Physics Frontier[M].Beijing: China Meteorological Press, 1998.1-15.
[3] 谭立忠, 朱风云.美国X-37B轨道试验飞行器发展研究[J].飞航导弹, 2011, (6):33-36.TAN L Z, ZHU F Y. Research on the development of the United States of America X-37B orbital test vehicle[J]. Winged Missiles Journal, 2011, (6):33-36.
[4] 邱惠中.美国空天飞机用先进材料最新进展[J].宇航材料工艺, 1994, (6):5-9.QU H Z. The latest progress in advanced materials used in the United States for aerospace plane[J]. Aerospace Materials & Technology, 1994, (6):5-9.
[5] YANN G, GREGORY A, CATHERINE M, et al. Flaking of black anodic films in space environment: Ageing and numerical simulation[J].Mechanics of Materials, 2012, 45:72-82.
[6] 曹东, 张晓云, 陆峰, 等. 先进复合材料T300/5405综合环境实验谱的研究[J]. 材料工程, 2014, (7): 73-78. CAO Dong, ZHANG Xiao-yun, LU Feng, et al. Synthetical environmental spectrum aging of T300/5405 advanced composite material[J]. Journal of Materials Engineering, 2014, (7): 73-78.
[7] 陈旭, 尹鹏, 咸贵军, 等. 苎麻纤维增强酚醛树脂基复合材料的湿热性能研究[J]. 航空材料学报, 2013, 33(2): 58-65. CHEN Xu, YIN Peng, XIAN Gui-jun, et al. Hygrothermal properties of ramie fiber/phenolic resin composite under different hygrothermal conditions[J]. Journal of Aeronautical Materials, 2013, 33(2): 58-65.
[8] ADAMCZAK A D, SPRIGGS A A, FITCH D M, et al. Blistering in carbon fiber filled fluorinated polyimide composites[J].Polymer Composites, 2011, 32(2):185-192.
[9] 臧振群, 古士芬, 师立勤, 等.航天器异常与空间环境[J].空间科学学报, 1998, 18(4):342-347.ZANG Z Q, GU S F, SHI L Q, et al. Study on spacecraft anomaly caused by space environment[J].Chinese Journal of Space Science, 1998, 18(4):342-347.
[10] 李成功, 傅恒志, 于翘. 航空航天材料[M].北京:国防工业出版社, 2002.123-185. LI C G, FU H Z, YU Q. Aerospace Materials[M].Beijing: National Defence Industry Press, 2002.123-185.
[11] 王浚, 黄本诚, 万大才. 环境模拟技术[M].北京:国防工业出版社, 1996.195-200. WANG J, HUANG B C, WAN D C. Environment Simulation Technology[M].Beijing: National Defence Industry Press, 1996.195-200.
[12] AWAJA F, JIN B M, ZHANG S N, et al. Surface molecular degradation of 3D glass polymer composite under low earth orbit simulated space environment[J].Polymer Degradation and Stability, 2010, 95(6):987-996.
[13] GAO Y, YANG D Z, XIAO J D, et al. Effect of proton irradiation on mechanical properties of carbon/epoxy composites[J].Journal of Spacecraft and Rockets, 2006, 43(3):505-508.
[14] PETERSON C E, PATIL R R, KALLMEYER A R, et al. A micromechanical damage model for carbon fiber composites at reduced temperatures[J].Journal of Composite Materials, 2008, 42:2063-2082.
[15] 高禹, 代小杰, 董尚利, 等.热循环作用下单向炭纤维/环氧树脂复合材料的热应力[J].高分子材料科学与工程, 2012, 28(9):178-181. GAO Y, DAI X J, DONG S L, et al. Investigation of thermal stress in a unidirectional carbon fiber/epoxy resin composite under thermal cycling[J].Polymer Materials Science and Engineering, 2012, 28(9):178-181.
[16] KWANG B S, CHUN G K, CHANG S H, et al. Prediction of failure thermal cycles in graphite/epoxy composite materials under simulated low earth orbit environments[J].Composites Part B, 2000, 31:223-235.
[17] ZHANG C, BINIENDA W K, MORSCHER G N, et al. Experimental and FEM study of thermal cycling induced microcracking in carbon/epoxy triaxial braided composites[J].Composites:Part A, 2013, 46:34-44.
[18] GAO Y, DONG S L, HE S, et al. Characterization on stress distribution and thermal expansion behavior for M40J/AG-80 composites experienced vacuum thermo-cycling[J].Journal of Reinforced Plastics and Composites, 2006, 25(16):1647-1657.
[19] GAO Y, HE S, YANG D Z, et al. Effect of vacuum thermo-cycling on physical properties of unidirectional M40J/AG-80 composites[J].Composites Part B: Engineering, 2005, 36(4):351-358.
[20] KOBAYASHI S, TAKEDA N. Experimental characterization of microscopic damage behavior in carbon/bismaleimide composite—effects of temperature and laminate configuration[J].Composites: Part A, 2002, 33:1529-1538.
[21] UPADHYAYA P, SINGH S, ROY S. A mechanism-based multi-scale model for predicting thermo-oxidative degradation in high temperature polymer matrix composites[J].Composites Science and Technology, 2011, 71:1309-1315.
[22] LAFARIE-FRENOT M C, GRANDIDIER J C, GIGLIOTTI M, et al. Thermo-oxidation behaviour of composite materials at high temperatures: a review of research activities carried out within the COMEDI program[J].Polymer Degradation and Stability, 2010, 95(6):965-974.
[23] DINH Q V, MARCO G, LAFARIE-FRENOT M C. Experimental characterization of thermo-oxidation-induced shrinkage and damage in polymer-matrix composites[J].Composites Part A, 2012, 43(4):577-586.
[24] JACQUES C, BRUNO M. Influence of laminate thickness on composite durability for long term utilization at intermediate temperature (100-150℃)[J].Composites Science and Technology, 2009, 69(9):1432-1436.
[25] UEKI T, NISHIJIMA S, IZUMI Y. Designing of epoxy resin systems for cryogenic use[J].Cryogenics, 2005, 45:141-148.
[26] KIM R Y, STEVE L D. Experimental and analytical studies on the damage initiation in composite laminates at cryogenic temperatures[J].Composite Structures, 2006, 76:62-66.
[27] 冯青, 李敏, 顾轶卓, 等.不同湿热条件下碳纤维/环氧复合材料湿热性能实验研究[J].复合材料学报, 2010, 27(6):16-20. FENG Q, LI M, GU Y Z, et al. Experimental study on carbon fiber/epoxy composite materials hygrothermal performance under different hygrothermal conditions[J].Acta Materiae Compositae Sinica, 2010, 27(6):16-20.
[28] 张立鹏, 沈真.复合材料吸湿试验的若干问题[J].航空制造技术, 2009, (增刊1):85-88. ZHANG L P, SHEN Z. Some problems of absorption test of composite materials[J].Aeronautical Manufacturing Technology, 2009, (Suppl 1):85-88.
[29] GU Y. The relaxation behaviour of GFRP unidirectional laminates[J].Transactions of Nanjing University of Aeronautics and Astronautics, 1999, 16(2):148-153.
[30] WU F Q, YAO W X. A model of fatigue life distribution of composite laminates based on their static strength distribution[J].Chinese Journal of Aeronautics, 2008, 21(3):241-246.
[31] BROUTMAN L J, SAHU S. A new theory to predict cumulative fatigue damage in fiberglass reinforced plastics[A].Composite Materials: Testing and Design (Second conference)[C].ASTM STP 497, 1972, 170-188.
[32] CHOU P C, CROMAN R. Residual strength in fatigue based on the strength life equal rank assumption[J].Journal of Composite materials, 1978, 12(2):127-194.
[33] 顾怡, 姚卫星.疲劳加载下纤维复合材料的剩余强度[J].复合材料学报, 1999, 16(3):98-102. GU Y, YAO W X. The residual strength of fiber composites under fatigue loading[J].Acta Materiae Compositae Sinica, 1999, 16(3):98-102.
[34] CAPRINO G, TETI R, IORIO I D. Predicting residual strength of pre-fatigued glass fibre-reinforced plastic laminates through acoustic emission monitoring[J].Composites: Part B, 2005, 36:365-371.
[35] YAO W X, HIMMEL N. A new cumulative fatigue damage model for fiber-reinforced plastics[J].Composites Science and Technology, 2000, 60(1):59-64.
[36] YANG J N. Fatigue and residual strength degradation for graphite/epoxy composites under tension-compression cyclic loading[J].Journal of Composite Materials, 1978, 12(1):19-39.
[37] YANG J N, JONES D L, YANG S H. A stiffness degradation model for graphite/epoxy laminates[J].Journal of Composite Materials, 1987, 24(7):753-796.
[38] 徐建新, 冯振宇.常幅疲劳载荷下复合材料层合板刚度退化试验研究[J].机械科学与技术, 2005, 24(9):1069-1070. XU J X, FENG Z Y. Experimental study on the stiffness degradation of composite laminates under constant amplitude loading[J].Mechanical Science and Technology, 2005, 24(9):1069-1070.
[39] 孙崇强, 张建宇, 费斌军.CFRP孔板拉伸疲劳环境效应的正交试验[J].北京航空航天大学学报, 2012, 38(10):1341-1345. SUN C Q, ZHANG J Y, FEI B J. Orthogonal test on environmental effects of fatigue life of CFRP composite laminates[J].Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(10):1341-1345.
[40] PATEL S R, CASE S W. Durability of hygrothermally aged graphite/epoxy woven composite under combined hygrothermal conditions[J].International Journal of Fatigue, 2002, 24(12):1295-1301.
[41] ZHANG A Y, LI D H, LU H B, et al. Qualitative separation of the effect of voids on the bending fatigue performance of hygrothermal conditioned carbon/epoxy composites[J].Materials & Design, 2011, 32(10):4803-4809.
[42] BELINGARDI G, VADORI R. Influence of the laminate thickness in low velocity impact behavior of composite material plate[J].Composite Structures, 2003, 61(1-2):27-38.
[43] 屈天骄, 郑锡涛, 范献银, 等.复合材料层合板低速冲击损伤影响因素分析[J].航空材料学报, 2011, 31(6):81-86. QU T J, ZHENG X T, FAN X Y, et al. Exploration of several influence factors of low-velocity impact damage on composite laminates[J].Journal of Aeronautical Materials, 2011, 31(6):81-86.
[44] 沈真, 杨胜春, 陈普会.复合材料层压板抗冲击行为及表征方法的实验研究[J].复合材料学报, 2008, 25(5):125-133. SHEN Z, YANG S C, CHEN P H. Experimental study on the behavior and characterization methods of composite laminates to withstand impact[J].Acta Materiae Compositae Sinica, 2008, 25(5):125-133.
[45] 沈真, 杨胜春, 陈普会.复合材料抗冲击性能和结构压缩设计许用值[J].航空学报, 2007, 28(3):561-566. SHEN Z, YANG S C, CHEN P H. Behaviors of composite materials to withstand impact and structural compressive design allowableness[J].Acta Aeronautica et Astronautica Sinica, 2007, 28(3):561-566.
[46] 徐颖, 崔海坡, 温卫东.含冲击损伤复合材料层合板疲劳试验研究[J].宇航材料工艺, 2007, (2):73-80. XU Y, CUI H B, WEN W D. Fatigue testing of impact-damaged composite laminates[J]. Aerospace Materials and Technology, 2007, (2):73-80.
[47] BAUCOM J N, ZIKRY M A. Low-velocity impact damage progression in woven E-glass composite systems[J].Composites Part A, 2005, 36(5):658-664.
[48] THOMA K, SCHAFER F, HIERMAIER S, et al. An approach to achieve progress in spacecraft shielding[J].Advances in Space Research, 2004, 34(5):1063-1075.
[49] 王洋.碳纤维/环氧复合材料高速撞击损伤效应研究[D].哈尔滨:哈尔滨工业大学材料科学与工程学院, 2009. WANG Y. Damage effects caused by high velocity impact on carbon fiber/epoxy composites[D].Harbin: School of Materials Science and Engineering, Harbin Institute of Technology, 2009.
[50] 张子龙, 程小全, 益小苏.复合材料层合板准静态横压损伤及其压缩破坏研究[J].复合材料学报, 2002, 19(5):108-113. ZHANG Z L, CHENG X Q, YI X S. Studies on quasi-static indentation damage and compressive failure of composite laminates[J].Acta Materiae Compositae Sinica, 2002, 19(5):108-113.
[51] 沈真, 张子龙, 王进, 等.复合材料损伤阻抗和损伤容限的性能表征[J].复合材料学报, 2004, 21(5):140-145. SHEN Z, ZHANG Z L, WANG J, et al. Characterization of damage resistance and damage tolerance behaviour of composite laminates[J].Acta Materiae Compositae Sinica, 2004, 21(5):140-145.
[52] JACKSON W C, POE C C. The use of impact force as a scale parameter for the impact response of composite laminates[J].Journal of Composites Technology Research, 1993, 15(4):282-289.
[53] 罗靓, 张佐光, 李敏, 等.复合材料层合板准静态压痕试验研究[J].复合材料学报, 2007, 24(3):154-159. LUO L, ZHANG Z G, LI M, et al. Quasi static indentation tests of laminated composite materials[J].Acta Materiae Compositae Sinica, 2007, 24(3):154-159.
[54] 郑晓霞, 郑锡涛, 沈真, 等.低速冲击与准静态压痕力下复合材料层合板的损伤等效性[J].航空学报, 2010, 31(5):928-933. ZHENG X X, ZHENG X T, SHEN Z, et al. Damage equivalence of composite laminates under low-velocity impact and quasi-static indentation force[J].Acta Aeronautica et Astronautica Sinica, 2010, 31(5):928-933.
[55] QI B, HERSZBERG I. An engineering approach for predicting residual strength of carbon/epoxy laminates after impact and hygrothermal cycling[J].Composite Structures, 1999, 47(1-4): 483-490.
[56] AOKI Y, YAMADA K , ISHIKAWA T. Effect of hygrothermal condition on compression after impact strength of CFRP laminates[J].Composites Science and Technology, 2008, 68(6):1376-1383.
[57] ZHANG A Y, LU H B, ZHANG D X. Effects of voids on residual tensile strength after impact of hygrothermal conditioned CFRP laminates[J].Composite Structures, 2013, 95:322-327.
[58] MOKHTAR H, SICOT O, ROUSSEAU J, et al. The influence of ageing on the impact damage of carbon epoxy composites[J].Procedia Engineering, 2011, 10:2615-2620.
[1] 俞树荣, 孟恺, 李淑欣. 空气和腐蚀环境下双相不锈钢SAF2507的疲劳性能[J]. 材料工程, 2015, 43(1): 77-81.
[2] 李松梅, 李湘澄, 辛长胜, 刘建华, 于美. 循环加速腐蚀中紫外照射对环氧涂层老化行为的影响[J]. 材料工程, 2014, 0(7): 60-66.
[3] 董建民, 李嘉荣, 牟仁德, 赵金乾, 史振学, 刘世忠. 高温热处理对带热障涂层DD6单晶高温合金互扩散行为及持久断裂特征的影响[J]. 材料工程, 2014, 0(6): 51-55.
[4] 毛萍莉, 席通, 刘正, 董阳, 刘遵鑫, 邸金南. 高应变率下AZ31镁合金焊接接头动态力学性能[J]. 材料工程, 2014, 0(5): 53-58.
[5] 李佳, 盛光敏. Ti/Nb/Cu作缓冲层的TiC金属陶瓷/304不锈钢扩散连接[J]. 材料工程, 2014, 0(12): 60-65.
[6] 沈尔明, 李晓欣, 王志宏, 滕佰秋, 刘嘉. 长期储存后橡胶材料湿热老化分析[J]. 材料工程, 2013, 0(7): 87-91.
[7] 佘欢, 疏达, 储威, 王俊, 孙宝德. Fe和Si杂质元素对7×××系高强航空铝合金组织及性能的影响[J]. 材料工程, 2013, 0(6): 92-98.
[8] 张红霞, 刘晓晴, 闫志峰, 王文先, 李永莲. 5A06铝合金焊接接头裂纹失效分析[J]. 材料工程, 2013, 0(3): 27-31,37.
[9] 王炯, 李敏, 顾轶卓, 王绍凯, 张佐光. 炭纤维复合材料共固化液体成型工艺及层间性能研究[J]. 材料工程, 2013, (2): 93-98.
[10] 曹晶晶, 陈华辉, 杜飞, 陈功哲. 助熔剂对原位转化炭纤维/氧化铝复合材料组织结构与性能的影响[J]. 材料工程, 2013, 0(12): 54-58.
[11] 赵文侠, 李莹, 范映伟, 郑运荣. 涡扇发动机二级转子叶片超温断裂分析[J]. 材料工程, 2012, 0(8): 39-44.
[12] 张丽娇, 顾轶卓, 李敏, 刘洪新, 张佐光. 炭纤维特性与炭纤维/环氧树脂界面断裂能关联分析[J]. 材料工程, 2012, 0(7): 81-85.
[13] 陈影, 付宁宁, 沈长斌, 葛继平. 5083铝合金搅拌摩擦焊搭接接头研究[J]. 材料工程, 2012, 0(6): 24-27.
[14] 李凌云, 刘璐琪, 汤龙程, 高云, 张忠. 二氧化硅纳米颗粒增强炭纤维/环氧树脂界面性能[J]. 材料工程, 2012, 0(6): 32-36.
[15] 刘丽荣, 祖国庆, 李晓宇, 金涛, 胡壮麒. Ru对单晶高温合金拉伸性能的影响[J]. 材料工程, 2012, 0(6): 76-79.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn