Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (12): 10-16    DOI: 10.11868/j.issn.1001-4381.2016.000163
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
含Cu取向硅钢中第二相粒子析出演变行为研究
李志超1, 党宁1, 江海涛2, 夏振海3
1. 北京科技大学 钢铁共性技术协同创新中心, 北京 100083;
2. 北京科技大学 冶金工程研究院, 北京 100083;
3. 北德克萨斯州大学 材料科学与工程学院, 美国 丹顿市 76203
Precipitation and Evolution Behavior of Second Phase Particles in Grain-oriented Silicon Steel with Cu
LI Zhi-chao1, DANG Ning1, JIANG Hai-tao2, XIA Zhen-hai3
1. Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China;
2. Institute of Engineering Technology, University of Science and Technology Beijing, Beijing 100083, China;
3. Department of Materials Science and Engineering, University of North Texas, Denton 76203, USA
全文: PDF(2466 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 使用场发射扫描电子显微镜(SEM)观察CGO硅钢制备过程中第二相粒子的析出行为及分布状态,统计粒子的平均尺寸、面密度及Zener因子。结果表明:试样中主要存在两种析出物,一种是(Cu,Mn)S复合析出物,尺寸为1μm左右,称为A类析出物,另一种是Cu2S析出物,尺寸为10~30nm,称为B类析出物,Cu2S起主要抑制作用。第二相粒子在热轧阶段大量弥散析出,平均粒子尺寸最小,面密度最高,高温退火前的加工阶段,粒子的平均尺寸不断增加,面密度逐渐降低;高温退火过程中,随着析出物体积分数的降低,其抑制能力呈下降趋势,960℃时析出物发生明显的聚集现象,当Zener因子A低于临界值0.19nm-1时,二次再结晶发生,残留的粒子不会产生有效的抑制作用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李志超
党宁
江海涛
夏振海
关键词 CGO硅钢抑制剂第二相粒子析出    
Abstract:The precipitation behavior and distribution of second phase particles in conventional grain-oriented silicon steel during manufacturing process were observed by field emission scanning electron microscopy, and the average particle size, the areal particle density, and the Zener factor were statistically analyzed. The results show that the samples mainly contain two kinds of precipitates:A class is the (Cu,Mn)S composite precipitates with the average size of 1μm; B class is the Cu2S precipitates with the size of 10-30nm, the key inhibition effect is produced by Cu2S. Hot rolling leads to a large amount of fine second phase particles precipitation, which has the minimum average particle size and the highest areal density; in the manufacturing process before high temperature annealing, the average particle size is increasing and the areal density is decreasing; in the process of high temperature annealing, with the decrease of volume fraction of precipitates, the inhibition ability exhibits reducing trend,obvious aggregation occurs at 960℃,secondary recrystallization will happen when Zener factor A decreases below the critical value of 0.19nm-1, and the residual particles will not produce valid inhibition effect.
Key wordsCGO silicon steel    inhibitor    second phase particle    precipitation
收稿日期: 2016-02-12      出版日期: 2017-12-19
中图分类号:  TG142.1  
通讯作者: 夏振海(1962-),男,美国北德克萨斯州大学材料科学与工程系及化学系双聘终身教授,主要从事新能源材料,仿生材料,纳米复合材料,高熵合金材料等领域的研究,E-mail:Zhenhai.xia@unt.edu     E-mail: Zhenhai.xia@unt.edu
引用本文:   
李志超, 党宁, 江海涛, 夏振海. 含Cu取向硅钢中第二相粒子析出演变行为研究[J]. 材料工程, 2017, 45(12): 10-16.
LI Zhi-chao, DANG Ning, JIANG Hai-tao, XIA Zhen-hai. Precipitation and Evolution Behavior of Second Phase Particles in Grain-oriented Silicon Steel with Cu. Journal of Materials Engineering, 2017, 45(12): 10-16.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.000163      或      http://jme.biam.ac.cn/CN/Y2017/V45/I12/10
[1] MAY J E, TURNBULL D. Secondary recrystallization in silicon iron[J]. Transactions of the Metallurgical Society of AIME, 1958, 212(12):769-781.
[2] ZHAO Y, HE Z. Advances in research on the mechanism of secondary recrystallization in grain oriented silicon steels[J]. Journal of Iron and Steel Research, 1991, 3(4):79-90.
[3] CUI F E, YANG P, MAO W M. Behaviors of different inhibitors during secondary recrystallization of a grain-oriented silicon steel[J]. International Journal of Minerals, Metallurgy and Materials, 2011, 18(3):314-319.
[4] 马红旭, 李友国. 硅钢中析出物的尺寸分布以及体积分数的测定[J]. 材料科学与工程学报, 2002, 20(3):328-330. MA H X, LI Y G. Measurement of size distribution and volume fraction of precipitates in silicon steel[J]. Journal of Material Science and Engineering, 2002, 20(3):328-330.
[5] SMITH C S. Grains, phases, and interfaces:an interpretation of microstructure[J]. Metallurgical and Materials Transactions A, 2010, 41(5):1064-1100.
[6] HUMPHREYS F J. A unified theory of recovery, recrystallization and grain growth, based on the stability and growth of cellular microstructures-I. The basic model[J]. Acta Materialia, 1997, 45(10):4231-4240.
[7] IWAYAMA K, HARATANI T. The dissolution and precipitation behavior of AlN and MnS in grain-oriented 3% silicon-steel with high permeability[J]. Journal of Magnetism and Magnetic Materials, 1980, 19(1):15-17.
[8] WRIEDT H A, HU H. The solubility product of manganese sulfide in 3 pct silicon-iron at 1270 to 1670K[J]. Metallurgical and Materials Transactions A, 1976, 7(4):711-718.
[9] OHATA Y, KUMANO T, FUJⅡ N, et al. Method for producing a grain-oriented electrical steel sheet excellent in magnetic properties:US 6432222[P]. 2002-08-13.
[10] LIU Z, KOBAYASHI Y, NAGAI K. Crystallography and precipitation kinetics of copper sulfide in strip casting low carbon steel[J]. ISIJ International, 2004, 44(9):1560-1567.
[11] NISHIZAWA T. Thermodynamics of microstructure control by particle dispersion[J]. ISIJ International, 2000, 40(12):1269-1274.
[12] 毛卫民, 杨平. 电工钢的材料学原理[M]. 北京:高等教育出版社, 2013. MAO W M, YANG P. Material science principles on electrical steels[M]. Beijing:Higher Education Press, 2013.
[13] 安治国, 毛卫民. 取向电工钢中MnS粒子析出形核行为[J]. 材料热处理学报, 2010, 31(2):45-50. AN Z G, MAO W M. Precipitation nucleation behaviors of MnS particles in a grain-oriented electrical steel[J]. Transantions of Materials and Heat Treatment, 2010, 31(2):45-50.
[14] MUKOSEEV A G, SHABASHOV V A, SAGARADZE V V, et al. Dissolution of carbon in Ni-1at.% Fe upon strong cold deformation[J]. Materials Science and Engineering:A, 2001, 316(1):174-181.
[15] LANGUILLAUME J, KAPELSKI G, BAUDELET B. Cementite dissolution in heavily cold drawn pearlitic steel wires[J]. Acta Materialia, 1997, 45(3):1201-1212.
[16] 刘丹, 孟利, 任勇, 等.压缩变形对铁硅合金中MnS粒子析出行为的影响规律研究[J]. 中国体视学与图像分析, 2012, 17(4):348-353. LIU D, MENG L, REN Y, et al. Effect of compression deformation on behaviors of MnS precipitation in Fe-Si alloys[J]. Chinese Journal of Stereology and Image Analysis, 2012, 17(4):348-353.
[17] LEE B J, SUNDMAN B, KIM S I, et al. Thermodynamic calculations on the stability of Cu2S in low carbon steels[J]. ISIJ international, 2007, 47(1):163-171.
[18] GUILLET A, ES-SADIQI E, L'ESPERANCE G, et al. Microstructure and mechanical properties of strip cast 1008 steel after simulated coiling, cold rolling and batch annealing[J]. ISIJ international, 1996, 36(9):1190-1198.
[19] 李阳, 毛卫民. 取向电工钢加工过程中第二相粒子的析出行为[J]. 北京科技大学学报, 2011, 33(4):439-443. LI Y, MAO W M. Precipitation behaviors of second-phase particles in grain-oriented electrical steel during manufacturing process[J].Journal of University of Science and Technology Beijing, 2011, 33(4):439-443.
[20] PARK J Y, HAN K S, WOO J S, et al. Influence of primary annealing condition on texture development in grain oriented electrical steels[J]. Acta Materialia, 2002, 50(7):1825-1834.
[21] HILLERT M. On the theory of normal and abnormal grain growth[J]. Acta Metallurgica, 1965, 13(3):227-238.
[22] NAKAE H, TAGASHIRA K. Effects of impurities on grain growth in strain-anneal and secondary recrystallization of Fe-3.25% Si alloy[J]. Transactions of the Japan Institute of Metals, 1973, 14(1):15-21.
[23] 孙强, 李志超, 米振莉. CGO硅钢初次再结晶组织及织构演变规律[J]. 材料工程, 2016, 44(9):38-43. SUN Q, LI Z C, MI Z L. Microstructure and texture evolution in primary recrystallization of CGO silicon steel[J]. Journal of Materials Engineering, 2016, 44(9):38-43.
[1] 范淑敏, 陈送义, 张星临, 周亮, 黄兰萍, 陈康华. 多级时效热处理对7056铝合金析出组织与耐蚀性的影响[J]. 材料工程, 2019, 47(6): 136-143.
[2] 王飞云, 金建军, 江志华, 王晓震, 胡春文. 热处理温度对新型马氏体时效不锈钢微观组织和性能的影响[J]. 材料工程, 2019, 47(6): 152-160.
[3] 秦振海, 黄昊, 吴爱民, 陈明珠, 杨影影, 姚曼. 立方相碳化钛在锂空电池中的电化学行为[J]. 材料工程, 2019, 47(2): 34-41.
[4] 王岩, 徐芳泓, 曾莉, 方旭东, 李阳, 李建民. 700℃(A-USC)锅炉材料617B镍基高温合金热变形及持久行为[J]. 材料工程, 2018, 46(7): 100-105.
[5] 许婷, 方晓英, 朱言利, 王铭, 尹文红, 郭红. 双相不锈钢中奥氏体沉淀相的晶粒取向及界面特征分布[J]. 材料工程, 2018, 46(2): 34-40.
[6] 吴书舟, 易幼平, 黄始全. 7050铝合金模锻件淬火过程析出动力学行为[J]. 材料工程, 2018, 46(11): 118-124.
[7] 方旭东, 王岩, 范光伟, 夏焱, 王志斌, 韩培德. 超超临界锅炉材料TP310HCbN(HR3C)持久及析出行为[J]. 材料工程, 2017, 45(6): 112-117.
[8] 白于良, 杨银辉, 曹建春, 顾洋, 普靖. Mn对22%Cr双相不锈钢700℃时效σ相及韧性的影响[J]. 材料工程, 2017, 45(5): 71-79.
[9] 麻晗, 廖舒纶. 高碳钢奥氏体晶粒长大的预测[J]. 材料工程, 2017, 45(1): 78-84.
[10] 刘晓艳, 王召朋, 龙亮, 张喜亮, 崔好选, 高飞. Mg与Ag含量对Al-Cu-Mg-Ag新型耐热铝合金晶间腐蚀性能的影响[J]. 材料工程, 2016, 44(9): 68-75.
[11] 彭世广, 宋仁伯, 王威, 谭志东, 蔡长宏, 王林炜杰. 热处理工艺对新型轻质奥氏体耐磨钢的组织与力学性能的影响[J]. 材料工程, 2016, 44(9): 24-31.
[12] 庞启航, 唐荻, 赵征志, 武会宾, 李烁. 低活化钢析出相热力学研究[J]. 材料工程, 2016, 44(7): 37-42.
[13] 乔瑞芳, 毕洪运, 陈玉喜. Ti,Nb和W复合强化超纯铁素体不锈钢的高温析出行为[J]. 材料工程, 2016, 44(5): 22-28.
[14] 范清松, 杨忠波, 周军, 石明华, 陈鑫, 李中奎. Zr-Sn-Nb-Fe系锆合金中第二相粒子研究进展[J]. 材料工程, 2016, 44(4): 110-118.
[15] 王小江, 孙新军, 李昭东, 张正延, 雍岐龙, 李员妹. 卷取温度对高Nb微合金钢组织、力学性能及第二相析出的影响[J]. 材料工程, 2016, 44(2): 35-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn