Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (12): 43-49    DOI: 10.11868/j.issn.1001-4381.2016.000342
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
短玻纤增强尼龙10T复合材料的热氧老化性能
宋海硕1,2, 周登凤1,3, 张道海1,2, 郭建兵1,2
1. 贵州大学 材料与冶金学院, 贵阳 550025;
2. 国家复合改性聚合物材料工程技术研究中心, 贵阳 550014;
3. 贵州理工学院 材料与冶金工程学院, 贵阳 550003
Thermal-oxidative Aging Properties of Short Glass Fiber Reinforced Nylon 10T Composites
SONG Hai-shuo1,2, ZHOU Deng-feng1,3, ZHANG Dao-hai1,2, GUO Jian-bing1,2
1. School of Materials and Metallurgy, Guizhou University, Guiyang 550025, China;
2. National Engineering Research Center for Compounding and Modification of Polymer Materials, Guiyang 550014, China;
3. School of Materials and Metallurgical Engineering, Guizhou Institute of Technology, Guiyang 550003, China
全文: PDF(3054 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 通过熔融共混法制备短玻纤增强尼龙10T(SGF/PA10T)复合材料,采用DSC、DMA、红外光谱、力学测试等表征方法对240℃下SGF/PA10T的热氧老化性能进行研究。结果表明:热氧老化使SGF/PA10T的初始结晶温度有所增加,玻纤与PA10T基体之间的界面作用减弱,阻尼性能下降;随着热氧老化时间的延长,复合材料的玻璃化转变温度先增加后减小,通过Arrhenius方程对SGF/PA10T发生玻璃化转变时的活化能进行计算,结果进一步证明热氧老化影响分子链的活动能力,并且PA10T分子链在老化初期发生微交联;同时热氧老化显著降低SGF/PA10T的力学性能,当老化天数为50d时,拉伸强度、弯曲强度和缺口冲击强度保持率分别为18.4%,9.8%和37.7%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋海硕
周登凤
张道海
郭建兵
关键词 玻纤尼龙10T热氧老化力学性能活化能    
Abstract:Short glass fiber reinforced polyamide 10T (SGF/PA10T) composites were prepared by melt blending method, and the thermal-oxidative aging properties of SGF/PA10T composites at 240℃ were characterized by differential scanning calorimetry (DSC), dynamic mechanical thermal analysis(DMA), FT-IR and mechanical properties test. The results show that the crystallization onset temperature of SGF/PA10T increases, the interfacial interaction between glass fiber and PA10T matrix is weakened, and damping capacity decreases during the thermal-oxygen aging process. With the increase of thermal-oxygen aging time, the glass transition temperature increases first and then decreases. Arrhenius equation was used to determine the glass transition activation energy of SGF/PA10T,and the results show that the mobility of molecular chain is changed and PA10T molecular chains are slight cross-linked in preliminary aging stage. At the same time, the thermal-oxygen can significantly reduce the mechanical properties of SGF/PA10T composites, after age at 240℃ for 50d,the tensile strength, flexural strength and impact strength retention rates are 18.4%, 9.8% and 37.7% respectively.
Key wordsglass fiber    PA10T    thermal-oxidative aging    mechanical property    activation energy
收稿日期: 2016-03-22      出版日期: 2017-12-19
中图分类号:  TQ323.6  
通讯作者: 郭建兵(1979-),男,研究员,硕士生导师,主要从事聚合物结构和性能等方面的研究,联系地址:贵州省贵阳市白云区国家复合改性聚合物材料工程技术研究中心(550014),E-mail:guojianbing_1015@126.com     E-mail: guojianbing_1015@126.com
引用本文:   
宋海硕, 周登凤, 张道海, 郭建兵. 短玻纤增强尼龙10T复合材料的热氧老化性能[J]. 材料工程, 2017, 45(12): 43-49.
SONG Hai-shuo, ZHOU Deng-feng, ZHANG Dao-hai, GUO Jian-bing. Thermal-oxidative Aging Properties of Short Glass Fiber Reinforced Nylon 10T Composites. Journal of Materials Engineering, 2017, 45(12): 43-49.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.000342      或      http://jme.biam.ac.cn/CN/Y2017/V45/I12/43
[1] COLIN X, MARAIS C, VERDU J. Kinetic modelling and simulation of gravimetric curves:application to the oxidation of bismaleimide and epoxy resins[J]. Polymer Degradation and Stability, 2002, 78(3):545-553.
[2] LI K F, FU P, LIU C L, et al. Synthesis, characterization and isothermal crystallization kinetics of poly (dodecamethylene terephthalamide)[J]. Advanced Materials Research,2011, 284:1894-1900.
[3] 温笑菁,易庆锋,麦杰鸿,等.聚对苯二甲酰癸二胺(PA10T)的结晶动力学[J].高分子材料科学与工程,2014,30(1):72-77. WEN X J, YI Q F, MAI J H, et al. Crystallization kinetics of poly(decamethylene terephthalamide)(PA10T)[J]. Polymer Materials Science & Engineering, 2014, 30(1):72-77.
[4] NOVITSKY T F, LANGE C A, MATHIAS L J, et al. Eutectic melting behavior of polyamide 10,T-co-6,T and 12,T-co-6,T copolyterephthalamides[J]. Polymer, 2010, 51(11):2417-2425.
[5] 易庆锋,张勇,陈健,等.耐高温聚酰胺研究进展[J].工程塑料应用,2009,37(11):80-82. YI Q F, ZHANG Y, CHEN J, et al. Advance on heat-resisting polyamide[J]. Engineering Plastics Application, 2009, 37(11):80-82.
[6] ERIKSSON P A, BOYDELL P, ERIKSSON K, et al. Effect of thermal-oxidative aging on mechanical, chemical, and thermal properties of recycled polyamide 66[J]. Journal of Applied Polymer Science, 1997, 65(8):1619-1630.
[7] WANG W, WANG X, LI R, et al. Environment-friendly synthesis of long chain semiaromatic polyamides with high heat resistance[J]. Journal of Applied Polymer Science, 2009, 114(4):2036-2042.
[8] THOMASON J L. Structure-property relationships in glass-reinforced polyamide, part 3:effects of hydrolysis ageing on the dimensional stability and performance of short glass-fiber-reinforced polyamide 66[J]. Polymer Composites, 2007, 28(3):344-354.
[9] 王海利,黄仁军,吴盾,等.热氧老化对尼龙6结晶行为与性能的影响[J].高分子材料科学与工程,2013,29(8):88-92. WANG H L, HUANG R J, WU D, et al. Effect of thermal oxidative aging on the crystallization behavior and properties of nylon-6[J]. Polymer Materials Science & Engineering, 2013, 29(8):88-92.
[10] MAZAN T, BERGGREN R, JORGENSEN J K, et al. Aging of polyamide 11 part 1:evaluating degradation by thermal, mechanical, and viscometric analysis[J]. Journal of Applied Polymer Science, 2015, 132(20):6249-6260.
[11] ZUO X, SHAO H, ZHANG D, et al. Effects of thermal-oxidative aging on the flammability and thermal-oxidative degradation kinetics of tris(tribromophenyl) cyanurate flame retardant PA6/LGF composites[J]. Polymer Degradation & Stability, 2013, 98(12):2774-2783.
[12] ZUO X, ZHANG K, YANG L, et al. Influence of thermooxidative aging on the static and dynamic mechanical properties of long-glass-fiber-reinforced polyamide 6 composites[J]. Journal of Applied Polymer Science, 2014, 131(3):1082-1090.
[13] MENARD K P. Dynamic mechanical analysis:a practical introduction[M]. Florida:CRC Press, 2008:2-5.
[14] MANOHARAN S, SURESHA B, RAMADOSS G, et al. Effect of short fiber reinforcement on mechanical properties of hybrid phenolic composites[J]. Journal of Materials, 2014, 2014(8):1-9.
[15] SHU Y, YE L, YANG T. Study on the long-term thermal-oxidative aging behavior of polyamide 6[J]. Journal of Applied Polymer Science, 2008, 110(2):945-957.
[1] 杨旭东, 安涛, 邹田春, 巩天琛. 湿热环境对碳纤维增强树脂基复合材料力学性能的影响及其损伤机理[J]. 材料工程, 2019, 47(7): 84-91.
[2] 王聃, 陶德华, 黄秀玲, 华子恺. 聚甲基丙稀酸羟乙酯甘油凝胶仿软骨材料的制备与性能[J]. 材料工程, 2019, 47(7): 71-75.
[3] 刘文祎, 徐聪, 刘茂文, 肖文龙, 马朝利. 稀土元素Gd对Al-Si-Mg铸造合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(6): 129-135.
[4] 王飞云, 金建军, 江志华, 王晓震, 胡春文. 热处理温度对新型马氏体时效不锈钢微观组织和性能的影响[J]. 材料工程, 2019, 47(6): 152-160.
[5] 陈海龙, 杨学锋, 王守仁, 鹿重阳, 吴元博. 改性酚醛树脂陶瓷摩擦材料的摩擦磨损性能[J]. 材料工程, 2019, 47(6): 108-113.
[6] 闫钊鸣, 张治民, 杜玥, 张冠世, 任璐英. 均匀化处理对Mg-13Gd-3.5Y-2Zn-0.5Zr镁合金组织和力学性能的影响[J]. 材料工程, 2019, 47(5): 93-99.
[7] 薛子明, 雷卫宁, 王云强, 钱海峰, 李奇林. 超临界条件下脉冲占空比对石墨烯复合镀层微观结构和性能的影响[J]. 材料工程, 2019, 47(5): 53-62.
[8] 李惠, 肖文龙, 张艺镡, 马朝利. 多重结构Ti-B4C/Al2024复合材料的组织和力学性能[J]. 材料工程, 2019, 47(4): 152-159.
[9] 崔岩, 项俊帆, 曹雷刚, 杨越, 刘园. 碳化硅颗粒表面吸附质对铝基复合材料制备及力学性能的影响[J]. 材料工程, 2019, 47(4): 160-166.
[10] 李亚锋, 礼嵩明, 黑艳伟, 邢丽英, 陈祥宝. 太阳辐照对芳纶纤维及其复合材料性能的影响[J]. 材料工程, 2019, 47(4): 39-46.
[11] 赵双赞, 燕绍九, 陈翔, 洪起虎, 李秀辉, 戴圣龙. 石墨烯纳米片增强铝基复合材料的动态力学行为[J]. 材料工程, 2019, 47(3): 23-29.
[12] 李灿, 陈文琳, 雷远. 微量Sr及均匀化工艺对Al-Mg-Si-Cu-Mn变形铝合金铸态组织与性能的影响[J]. 材料工程, 2019, 47(2): 90-98.
[13] 李秀辉, 燕绍九, 洪起虎, 赵双赞, 陈翔. 石墨烯添加量对铜基复合材料性能的影响[J]. 材料工程, 2019, 47(1): 11-17.
[14] 孟祥龙, 衣明东, 肖光春, 陈照强, 许崇海. 石墨烯纳米片增韧Al2O3基纳米复合陶瓷刀具材料[J]. 材料工程, 2019, 47(1): 25-31.
[15] 陈刚, 王璐, 杨静, 李强, 吕品, 马胜国. Al0.1CoCrFeNi高熵合金的力学性能和变形机理[J]. 材料工程, 2019, 47(1): 106-111.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn