Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (12): 58-64    DOI: 10.11868/j.issn.1001-4381.2016.000986
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
CVI-GSI工艺制备C/C-SiC复合材料的组成结构与力学性能
孙国帅, 刘荣军, 曹英斌, 贺鹏博, 龙宪海
国防科学技术大学 航天科学与工程学院, 长沙 410073
Structure and Mechanical Properties of C/C-SiC Composites Prepared by CVI-GSI Processes
SUN Guo-shuai, LIU Rong-jun, CAO Ying-bin, HE Peng-bo, LONG Xian-hai
College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
全文: PDF(3357 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用密度为1.0g/cm3的C/C素坯,联合化学气相渗透(CVI)和气相渗硅(GSI)2种工艺制备C/C-SiC复合材料,研究CVI C/C-SiC复合材料中间体的密度对CVI-GSI C/C-SiC复合材料物相组成、微观结构及力学性能的影响。结果表明:随着CVI C/C-SiC复合材料中间体密度的增大,CVI-GSI C/C-SiC复合材料C含量增多,残余Si含量减少,SiC含量先增多后减少,CVI-GSI C/C-SiC复合材料的密度先增大后减小;随着CVI C/C-SiC复合材料中间体的密度由1.27g/cm3增加到1.63g/cm3时,得到的CVI-GSI C/C-SiC复合材料的力学性能先升高后降低。当CVI C/C-SiC复合材料密度为1.42g/cm3时,制得的CVI-GSI C/C-SiC复合材料力学性能最好,其弯曲强度为247.50MPa,弯曲模量为25.63GPa,断裂韧度为10.08MPa·m1/2
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙国帅
刘荣军
曹英斌
贺鹏博
龙宪海
关键词 CVIGSIC/C-SiC复合材料物相组成力学性能    
Abstract:C/C-SiC composites were prepared by the combined process of chemical vapor infiltration (CVI) and gaseous silicon infiltration (GSI) using C/C green body with the density of 1.0g/cm3. Effect of CVI C/C-SiC intermediate composites' density on the phase composition, microstructure and mechanical properties of CVI-GSI C/C-SiC composites was studied. The results show that as the CVI C/C-SiC intermediate composites' density increases, the residual C content increases and residual Si content decreases in the CVI-GSI C/C-SiC composites, the SiC content increases first and then decreases, and the density of CVI-GSI C/C-SiC composites increases first and then decreases; as the CVI C/C-SiC in termediate composites' density is increased from 1.27g/cm3 to 1.63g/cm3, the mechanical properties of CVI-GSI C/C-SiC composites increase at first, which then decrease with the further increasing of CVI-C/C-SiC composites' density. Specifically, when the CVI C/C-SiC composites density is 1.42g/cm3, the prepared CVI-GSI C/C-SiC composites has the best mechanical properties, with flexure strength, flexure modulus and fracture toughness of 247.50MPa, 25.63GPa and 10.08MPa·m1/2, respectively.
Key wordsCVI    GSI    C/C-SiC composites    phase composition    mechanical property
收稿日期: 2016-08-19      出版日期: 2017-12-19
中图分类号:  TB332  
通讯作者: 刘荣军(1978-),男,副研究员,博士,研究方向为陶瓷基复合材料,联系地址:湖南省长沙市开福区德雅路109号国防科技大学新型陶瓷纤维及其复合材料重点实验室(410073);,E-mail:rongjunliu@nudt.edu.cn     E-mail: rongjunliu@nudt.edu.cn
引用本文:   
孙国帅, 刘荣军, 曹英斌, 贺鹏博, 龙宪海. CVI-GSI工艺制备C/C-SiC复合材料的组成结构与力学性能[J]. 材料工程, 2017, 45(12): 58-64.
SUN Guo-shuai, LIU Rong-jun, CAO Ying-bin, HE Peng-bo, LONG Xian-hai. Structure and Mechanical Properties of C/C-SiC Composites Prepared by CVI-GSI Processes. Journal of Materials Engineering, 2017, 45(12): 58-64.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.000986      或      http://jme.biam.ac.cn/CN/Y2017/V45/I12/58
[1] 徐永东, 张立同, 成来飞, 等. 碳/碳化硅摩阻复合材料的研究进展[J].硅酸盐学报,2006,34(8):992-998. XU Y D, ZHANG L T, CHENG L F, et al. Research progress on carbon/silicon carbide friction composite[J]. Journal of the Chinese Ceramic Society, 2006,34(8):992-998.
[2] NASLAIN R. SiC-matrix composites:non-brittle ceramics for thermo-structural application[J]. International Journal of Applied Ceramic Technology, 2005,2(2):75-84.
[3] 张德坷, 曹英斌, 刘荣军, 等. C/SiC复合材料空间光机结构件的研究进展与展望[J]. 材料导报,2012,26(7):7-11. ZHANG D K, CAO Y B, LIU R J, et al. Progress and prospect of C/SiC composites used in space opto-mechanical structures[J]. Materials Review, 2012,26(7):7-11.
[4] KRENKEL W, BERNDT F. C/C-SiC composites for space applications and advanced friction systems[J]. Materials Science and Engineering:A, 2005,412(1/2):177-181.
[5] 张智, 郝志彪, 闰联生. C/C-SiC复合材料制备方法及应用现状[J].碳素,2008(2):29-35. ZHANG Z, HAO Z B, YAN L S. Preparation methods and application of C/C-SiC composites[J]. Carbon, 2008(2):29-35.
[6] 肖鹏, 徐永东, 张立同, 等.旋转CVI制备C/SiC复合材料[J]. 无机材料学报,2000,15(5):903-906. XIAO P, XU Y D, ZHANG L T, et al. Rapid fabrication of C/SiC composites using rotating chemical vapor infiltration[J]. Journal of Inorganic Materials, 2000,15(5):903-906.
[7] 李厚补, 张立同, 成来飞.先驱体转化法制备碳化硅陶瓷产率研究评述[J]. 高分子材料科学与工程,2007,23(4):20-23. LI H B, ZHANG L T, CHENG L F. Review on ceramic yield of silicon carbide fabricated by polymer impregnation and pyrolysis[J]. Polymer Materials Science and Engineering, 2007,23(4):20-23.
[8] BYUNG J O, YOUNG J L, DOO J C. Fabrication of carbon/silicon carbide composites by isothermal chemical vapor infiltration using the in situ whisker-growing and matrix-filling process[J]. Journal of the American Ceramic Society, 2001,84(1):245-247.
[9] 张长瑞, 郝元恺. 陶瓷基复合材料-原理、工艺、性能与设计[M]. 长沙:国防科技大学出版社,2001:307-308. ZHANG C R, HAO Y K. Ceramic matrix composites-principle, technology, property and design[M]. Changsha:National University of Defense Technology Press, 2001:307-308.
[10] 任芸芸.原位反应法制各C/C-SiC复合材料的摩擦性能及氧化性能的研究[D].长沙:中南大学,2004. REN Y Y. The friction behavior and oxidation performance of C/C-SiC composites prepared by in-situ reaction[D]. Changsha:Central South University,2004.
[11] 侯向辉, 李贺军, 刘应楼, 等.先进陶瓷基复合材料制备技术-CVI法现状及进展[J]. 硅酸盐通报,1999(2):32-36. HOU X H, LI H J, LIU Y L, et al. The advanced process for fabrication of ceramic matrix composites:chemical vapor infiltration[J].Bulletin of the Chinese Ceramic Society,1999(2):32-36.
[12] KRENKEL W. Cost effective processing of CMC composites by melt infiltration (LSI-process)[J].Ceramic Engineering and Science Proceeding,2001,22(3):443-454.
[13] 崔园园, 白瑞成, 孙晋良, 等. 熔融渗硅法制备C/C-SiC复合材料的研究进展[J].材料导报,2011,25(1):31-36. CUI Y Y, BAI R C, SUN J L, et al. Research of C/C-SiC composites prepared by liquid silicon infiltration[J]. Materials Review A, 2011,25(1):31-36.
[14] MUHLRATZER A. Production, properties and applications of ceramic matrix composites[J]. Ceramic Forum International, 1999,76(4):30-35.
[15] SHOBU K, TANI E, KISHI K, et al. SiC-intermetallics composites fabricated by melt infiltration[J]. Key Engineering Materials, 1999,159/160:325-330.
[16] WILLIAM B H. Making ceramic composites by melt infiltration[J]. American Ceramic Society Bulletin, 1994,73(4):56-62.
[17] 曹宇,刘荣军,曹英斌,等. 素坯密度对气相渗硅制备C/C-SiC复合材料结构与性能的影响[J]. 材料工程,2016,44(7):19-25. CAO Y, LIU R J, CAO Y B, et al. Effects of preform density on structure and property of C/C-SiC composites fabricated by gaseous silicon infiltration[J]. Journal of Materials Engineering, 2016,44(7):19-25.
[18] 何新波, 张长瑞, 周新贵. 裂解碳涂层对碳纤维增强碳化硅复合材料力学性能的影响[J].高技术通讯,2000,10(9):92-94. HE X B, ZHANG C R, ZHOU X G. Effect of pyrolytic carbon coating on mechanical properties of Cf/SiC composites[J]. High Technology Letters, 2000,10(9):92-94.
[19] 余惠琴, 陈长乐, 邹武, 等. C/C-SiC复合材料的制备与性能[J].宇航材料工艺,2001,31(2):28-32. YU H Q, CHEN C L, ZOU W, et al. Fabrication and properties of C/C-SiC matrix composites[J]. Aerospace Materials and Technology, 2001,31(2):28-32.
[20] 宋麦丽, 王涛, 闫联生, 等. 高性能C/SiC复合材料的快速制备[J].新型炭材料,2001,16(2):57-60. SONG M L, WANG T, YAN L S, et al. Rapid fabrication of C/SiC composites with high performance[J]. New Carbon Materials, 2001,16(2):57-60.
[1] 杨旭东, 安涛, 邹田春, 巩天琛. 湿热环境对碳纤维增强树脂基复合材料力学性能的影响及其损伤机理[J]. 材料工程, 2019, 47(7): 84-91.
[2] 王聃, 陶德华, 黄秀玲, 华子恺. 聚甲基丙稀酸羟乙酯甘油凝胶仿软骨材料的制备与性能[J]. 材料工程, 2019, 47(7): 71-75.
[3] 刘文祎, 徐聪, 刘茂文, 肖文龙, 马朝利. 稀土元素Gd对Al-Si-Mg铸造合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(6): 129-135.
[4] 王飞云, 金建军, 江志华, 王晓震, 胡春文. 热处理温度对新型马氏体时效不锈钢微观组织和性能的影响[J]. 材料工程, 2019, 47(6): 152-160.
[5] 陈海龙, 杨学锋, 王守仁, 鹿重阳, 吴元博. 改性酚醛树脂陶瓷摩擦材料的摩擦磨损性能[J]. 材料工程, 2019, 47(6): 108-113.
[6] 闫钊鸣, 张治民, 杜玥, 张冠世, 任璐英. 均匀化处理对Mg-13Gd-3.5Y-2Zn-0.5Zr镁合金组织和力学性能的影响[J]. 材料工程, 2019, 47(5): 93-99.
[7] 薛子明, 雷卫宁, 王云强, 钱海峰, 李奇林. 超临界条件下脉冲占空比对石墨烯复合镀层微观结构和性能的影响[J]. 材料工程, 2019, 47(5): 53-62.
[8] 李惠, 肖文龙, 张艺镡, 马朝利. 多重结构Ti-B4C/Al2024复合材料的组织和力学性能[J]. 材料工程, 2019, 47(4): 152-159.
[9] 崔岩, 项俊帆, 曹雷刚, 杨越, 刘园. 碳化硅颗粒表面吸附质对铝基复合材料制备及力学性能的影响[J]. 材料工程, 2019, 47(4): 160-166.
[10] 李亚锋, 礼嵩明, 黑艳伟, 邢丽英, 陈祥宝. 太阳辐照对芳纶纤维及其复合材料性能的影响[J]. 材料工程, 2019, 47(4): 39-46.
[11] 赵双赞, 燕绍九, 陈翔, 洪起虎, 李秀辉, 戴圣龙. 石墨烯纳米片增强铝基复合材料的动态力学行为[J]. 材料工程, 2019, 47(3): 23-29.
[12] 李灿, 陈文琳, 雷远. 微量Sr及均匀化工艺对Al-Mg-Si-Cu-Mn变形铝合金铸态组织与性能的影响[J]. 材料工程, 2019, 47(2): 90-98.
[13] 李秀辉, 燕绍九, 洪起虎, 赵双赞, 陈翔. 石墨烯添加量对铜基复合材料性能的影响[J]. 材料工程, 2019, 47(1): 11-17.
[14] 孟祥龙, 衣明东, 肖光春, 陈照强, 许崇海. 石墨烯纳米片增韧Al2O3基纳米复合陶瓷刀具材料[J]. 材料工程, 2019, 47(1): 25-31.
[15] 陈刚, 王璐, 杨静, 李强, 吕品, 马胜国. Al0.1CoCrFeNi高熵合金的力学性能和变形机理[J]. 材料工程, 2019, 47(1): 106-111.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn