Please wait a minute...
材料工程  2018, Vol. 46 Issue (5): 1-10    DOI: 10.11868/j.issn.1001-4381.2016.001341
  石墨烯专栏 本期目录 | 过刊浏览 | 高级检索 |
郝欢欢1, 刘晶冰1, 李坤威2, 汪浩1, 严辉1
1. 北京工业大学 材料科学与工程学院, 北京 100124;
2. 中国标准化研究院, 北京 100142
Research Progress on Characterization of Graphene Structure by Raman Spectroscopy
HAO Huan-huan1, LIU Jing-bing1, LI Kun-wei2, WANG Hao1, YAN Hui1
1. College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China;
2. China National Institute of Standardization, Beijing 100142, China
全文: PDF(4042 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 石墨烯是一种只有一个原子层的二维原子晶体,它是构成零维富勒烯、一维碳纳米管和三维石墨等其他碳同素异形体的基本结构单元,具有很多独特的电子及力学性能,因而吸引了化学、材料及其他领域众多科学家的高度关注。拉曼光谱作为一种灵敏便捷的表征方法,在石墨烯的研究中起到重要的作用。该综述总结了近年来拉曼光谱在石墨烯表征中的应用,在对单层石墨烯的典型特征峰作详细介绍的基础上,通过对拉曼谱图中D峰、G峰和2D峰的强度、位置和半峰宽变化情况的分析,可以快速而准确地表征出石墨烯的层数,并可以对石墨烯的堆垛方式、边缘手性和掺杂程度进行判定。同时,也系统地分析了在石墨烯制备与测试过程中基底、掺杂、温度和激光功率等因素对拉曼谱图中D峰、G峰和2D峰的强度、位置和半峰宽的影响。
E-mail Alert
关键词 石墨烯拉曼光谱层数效应堆垛方式边缘手性掺杂程度    
Abstract:Graphene is a kind of two-dimensional atomic crystal with one atomic layer, which is the basic structure unit of other dimensions of graphite materials, such as zero dimensional fullerenes, one-dimensional carbon nanotubes and three-dimensional graphite. Graphene has a lot of unique electronic and mechanical properties, which have attracted high attention of many scientists in the field of chemistry, materials and other fields. Raman spectroscopy as a sensitive and convenient characterization method, has played a very important role in the study of graphene. Raman spectroscopy is an integral part of graphene research. The application of Raman spectroscopy in graphene characterization in recent years is reviewed in this paper. The characteristic peak of monolayer graphene was first intnduced. Then, through the analysis of the changes of D peak, G peak and 2D peak intensity, position and half peak width of Raman spectra, the number of graphene layers can be quickly and accurately characterized, as well as, the stacking orders, edge chirality and doping degree of graphene were defined. At the same time, the effects of substrate, doping, temperature and laser power on the intensity, position and half width of D peak, G peak and 2D peak of Raman spectra in the process of preparing graphene were also systematically analyzed.
Key wordsgraphene    Raman spectroscopy    layer effect    stacking order    edge chirality    doping degree
收稿日期: 2016-09-10      出版日期: 2018-05-16
中图分类号:  O657.37  
通讯作者: 刘晶冰(1978-),女,副教授,博士研究生,从事材料化学研究,联系地址:北京市北京工业大学材料楼229室(100124),     E-mail:
郝欢欢, 刘晶冰, 李坤威, 汪浩, 严辉. 拉曼光谱表征石墨烯结构的研究进展[J]. 材料工程, 2018, 46(5): 1-10.
HAO Huan-huan, LIU Jing-bing, LI Kun-wei, WANG Hao, YAN Hui. Research Progress on Characterization of Graphene Structure by Raman Spectroscopy. Journal of Materials Engineering, 2018, 46(5): 1-10.
链接本文:      或
[1] WALLACE P R.The band theory of graphite[J].Physical Review,1947,71(9):622-634.
[2] MCCLURE J W.Diamagnetism of graphite[J].Physical Review,1956,104(3):666-671.
[3] NOVOSELOV K S,GEIM A K,MOROZOV S V,et al.Electric field effect in atomically thin carbon films[J].Science,2004,306(5696):666-669.
[4] MEYER J C,GEIM A K,KATSNELSON M I,et al.The structure of suspended graphene sheets[J].Nature,2007,446(7131):60-63.
[5] GEIM A K,NOVOSELOV K S.The rise of graphene[J].Nature Materials,2007,6(3):183-191.
[6] SHIN D,BAE S K,YAN C,et al.Synthesis and applications of graphene electrodes[J].Carbon Letters,2012,13(1):1-16.
[7] ZHANG Y B,TAN Y W,STORMER H L,et al.Experimental observation of quantum hall effect and Berry's phase in graphene[J].Nature,2005,438(7065):1-7.
[8] YANG H,HEO J,PARK S,et al.Graphene barrister,a triode device with a gate-controlled Schottky barrier[J].Science,2012,336(6085):1140-1143.
[9] LU J M,ZHANG H J,WU S,et al.Graphene magnetoresistance device in van der Pauw geometry[J].Nano Letters,2011,11(7):2973-2977.
[10] ZHU Y,SUN Z Z,YAN Z,et al.Rational design of hybrid graphene films for high-performance transparent electrodes[J].Acs Nano,2011,5(8):6472-6479.
[11] ARCO L G D,ZHANG Y,SCHLENKER C W,et al.Continuous,highly flexible,and transparent graphene films by chemical vapor deposition for organic photovoltaics[J].Acs Nano,2010,4(5):2865-2873.
[12] WU C H,SHEN Q,DENG S X,et al.Preparation of novel three-dimensional NiO/ultrathin derived graphene hybrid for supercapacitor applications[J].ACS Applied Materials&Interfaces,2014,6(2):1106-1112.
[13] WU C H,SHEN Q,MI R,et al.Three-dimensional Co3O4/flocculent graphene hybrid on Ni foam for supercapacitor applications[J].Journal of Materials Chemistry A,2014,2(38):15987-15994.
[14] FERRARI A C,MEYER J C,SCARDACI V,et al.Raman spectrum of graphene and graphene layers[J].Physical Review Letters,2006,97(18):13831-13840.
[15] KUZMANY H,PFEIFFER R,HULMAN M,et al.Raman spectroscopy of fullerenes and fullerene-nanotube composites[J].Philosophical Transactions of the Royal Society A Mathematical Physical&Engineering Sciences,2004,362(1824):2375-2406.
[16] DRESSELHAUS M S,DRESSELHAUS G,JORIO A,et al.Raman spectroscopy on isolated single wall carbon nanotubes[J].Carbon,2002,40(12):2043-2061.
[17] FERRARI A C,ROBERTSON J.Resonant Raman spectroscopy of disordered,amorphous,and diamondlike carbon[J].Physical Review B Condensed Matter,2001,64(7):075414-1-075414-13.
[18] MI R,LIU H,WANG H,et al.Effects of nitrogen-doped carbon nanotubes on the discharge performance of Li-air batteries[J].Carbon,2014,67(2):744-752.
[19] FERRARI A C,BASKO D M.Raman spectroscopy as a versatile tool for studying the properties of graphene[J].Nature Nanotechnology,2013,8(4):235-246.
[20] MALARD L M,NILSSON J,ELIAS D C,et al.Probing the electronic structure of bilayer graphene by Raman scattering[J].Physical Review B Condensed Matter,2007,76(20):1401-1-1401-4.
[21] FERRARI A C,ROBERTSON J.Interpretation of Raman spectra of disordered and amorphous carbon[J].Physical Review B Condensed Matter,2000,61(20):14095-14107.
[22] DAS A,PISANA S,CHAKRABORTY B,et al.Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor[J].Nature Nanotechnology,2008,3(4):210-215.
[23] GRAF D,MOLITOR F,ENSSLIN K,et al.Spatially resolved raman spectroscopy of single-and few-layer graphene[J].Nano Letters,2007,7(2):238-242.
[24] FERRARI A C.Raman spectroscopy of graphene and graphite:Disorder,electron-phonon coupling,doping and nonadiabatic effects[J].Solid State Communications,2007,143(1/2):47-57.
[25] YAN J,ZHANG Y B,KIM P,et al.Electric field effect tuning of electron-phonon coupling in graphene[J].Physical Review Letters,2007,98(16):166802-1-166802-4.
[26] TUINSTRA F,KOENIG J L.Raman spectrum of graphite[J].Journal of Chemical Physics,1970,53(3):1126-1130.
[27] THOMSEN C,REICH S.Double resonant raman scattering in graphite[J].Physical Review Letters,2001,85(24):5214-5217.
[28] GARCIA S,MARIN A.Determination of LA and TO phonon dispersion relations of graphene near the Dirac point by double resonance Raman scattering[J].Physical Review B,2007,76(23):233407-1-233407-4.
[29] FERRARI A C,ROBERTSON J.Interpretation of Raman spectra of disordered and amorphous carbon[J].Physical Review B,2000,61(20):14095-14107.
[30] NEMANICH R J,SOLIN S A.First-and second-order Raman scattering from finite-size crystals of graphite[J].Physical Review B,1979,20(2):392-401.
[31] GUPTA A,CHEN G,JOSHI P,et al.Raman scattering from high-frequency phonons in supported n-graphene layer films letters[J].Nano Letters,2006,6(12):2667-2673.
[32] NI Z H,WANG Y Y,YU T,et al.Raman spectroscopy and imaging of grapheme[J].Nano Research,2008,1(4):273-291.
[33] DAS A,CHAKRABORTY B,SOOD A K.Raman spectroscopy of graphene on different substrates and influence of defects[J].Bulletin of Materials Science,2007,31(3):579-584.
[34] PONCHARAL P,AYARI A,MICHEL T,et al.Raman spectra of misoriented bilayer graphene[J].Physical Review B Condensed Matter,2008,78(11):113407-1-113407-8.
[35] LOPES D S J M B,PERES N M R,CASTRO NETO A H.Graphene bilayer with a twist:electronic structure[J].Physical Review Letters,2008,99(25):256802-1-256802-4.
[36] MAK K F,SHAN J,HEINZ T F.Electronic structure of few-layer graphene:experimental demonstration of strong dependence on stacking sequence[J].Physical Review Letters,2010,104(17):39-87.
[37] NGUYEN T A,LEE J U,YOON D,et al.Excitation energy dependent Raman signatures of ABA-and ABC-stacked few-layer graphene[J].Scientific Reports,2014,4(7):4630-1-4630-5.
[38] LUI C H,LI Z,MAK K F,et al.Observation of an electrically tunable band gap in trilayer graphene[J].Nature Physics,2011,7(12):944-947.
[39] KIM M,CHOI S M,YOON H A,et al.Photocurrent generation at ABA/ABC lateral junction in tri-layer graphene photodetector[J].Carbon,2016,96:454-458.
[40] LUI C H,LI Z,CHEN Z,et al.Imaging stacking order in few-layer graphene[J].Nano Letters,2010,11(1):164-169.
[41] CONG C X,YU T,SATO K,et al.Raman characterization of ABA-and ABC-stacked trilayer grapheme[J].Acs Nano,2011,5(11):8760-8768.
[42] YAN J A,RUAN W Y,CHOU M Y.Phonon dispersions and vibrational properties of monolayer,bilayer,and trilayer graphene:density-functional perturbation theory[J].Physical Review B Condensed Matter,2009,77(12):125401-1-125401-8.
[43] 吴娟霞,徐华,张锦.拉曼光谱在石墨烯结构表征中的应用[J].化学学报,2014,72(3):301-318.WU J X,XU H,ZHANG J.Raman spectroscopy of graphene[J].Acta Chimca Sinica,2014,72(3):301-318.
[44] YOU Y M,NI Z H,YU T,et al.Edge chirality determination of graphene by Raman spectroscopy[J].Applied Physics Letters,2008,93(16):163112-1-1613112-3.
[45] ZHANG X,LI Q Q,HAN W P,et al.Raman identification of edge alignment of bilayer graphene down to the nanometer scale[J].Nanoscale,2014,6(13):7519-7525.
[46] BEGLIARBEKOV M,SUL O,KALLIAKOS S,et al.Determination of edge purity in bilayer graphene using micro-Raman spectroscopy[J].Applied Physics Letters,2010,97(3):031908-1-031908-3.
[47] CONG C X,YU T,WANG H M.Raman study on the g mode of graphene for determination of edge orientation[J].Acs Nano,2010,4(6):3175-3180.
[48] ZHANG C H,FU L,LIU N,et al.Synthesis of nitrogen-doped graphene using embedded carbon and nitrogen sources[J].Advanced Materials,2011,23(8):1020-1024.
[49] HU G X.Raman spectroscopic characterization of graphene[J].Applied Spectroscopy Reviews,2010,45(1):369-407.
[50] PANCHAKARLA L S,SUBRAHMANYAM K S,SAHA S K,et al.Synthesis,structure and properties of boron and nitrogen doped graphene[J].Advanced Materials,2009,21(46):4726-4730.
[51] LIU L,RYU S,TOMASIK M R,et al.Graphene oxidation:Thickness-dependent etching and strong chemical doping[J].Nano Letters,2008,8(7):1965-1970.
[52] CANCADO L G,TAKAI K,ENOKI T,et al.General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy[J].Applied Physics Letters,2006,88(16):163106-1163106-3.
[53] WANG Y Y,NI Z H,YU T,et al.Raman studies of monolayer graphene:the substrate effect[J].Journal of Physical Chemistry C,2008,112(29):10637-10640.
[54] CASIRAGHI C,PISANA S,NOVOSELOV K S,et al.Raman fingerprint of charged impurities in graphene[J].Applied Physics Letters,2007,91(23):233108-1-233108-3.
[55] CALIZO I,BAO W Z,MIAO F,et al.Graphene-on-sapphire and graphene-on-glass:Raman spectroscopy study[J].Physics,2007,91(20):201904-1-201904-9.
[56] CALIZO I,TEWELDEBRHAN D,BAO W Z,et al.Spectroscopic Raman nanometrology of graphene and graphene multilayers on arbitrary substrates[J].Journal of Physics Conference Series,2008,109(1):012008-1-012008-4.
[57] OHTA T,BOSTWICK A,SEYLLER T,et al.Controlling the electronic structure of bilayer graphene[J].Science,2006,313(5789):951-954.
[58] VARCHON F,FENG R,HASS J,et al.Electronic structure of epitaxial graphene layers on SiC:effect of the substrate[J].Physical Review Letters,2007,99(12):126805-1-126905-5.
[59] CELEBI C,YANIK C,DEMIRKOL A G,et al.The effect of a SiC cap on the growth of epitaxial graphene on SiC in ultra high vacuum[J].Carbon,2012,50(8):3026-3031.
[60] NI Z H,CHEN W,FAN X F,et al.Raman spectroscopy of epitaxial graphene on a SiC substrate[J].Physical Review B,2008,77(11):115416-1-115416-20.
[61] ABDULA D,OZEL T,KANG K,et al.Environment-induced effects on the temperature dependence of Raman spectra of single-layer graphene[J].Journal of Physical Chemistry C,2008,112(51):20131-20134.
[62] CALIZO I,MIAO F,BAO W,et al.Variable temperature Raman microscopy as a nanometrology tool for graphene layers and graphene-based devices[J].Applied Physics Letters,2007,91(7):071913-1-071913-3.
[63] CALIZO I,BALANDIN A A,BAO W Z,et al.Temperature dependence of the Raman spectra of graphene and graphene multilayers[J].Nano Letters,2007,7(9):2645-2649.
[64] CALIZO I,LAU C N.Raman nanometrology of graphene on arbitrary substrates and at variable temperature[J].Proceedings of SPIE-The International Society for Optical Engineering,2008,7037:70371B-1-70371B-8.
[65] ZHOU H Q,QIU C Y,YU F,et al.Raman scattering of monolayer graphene:the temperature and oxygen doping effects[J].Journal of Physics D Applied Physics,2011,44(18):237-251.
[66] LATE D J,MAITRA U,PANCHAKARLA L S,et al.Temperature effects on the Raman spectra of graphenes:dependence on the number of layers and doping[J].Journal of Physics Condensed Matter,2011,23(5):55303-55307.
[67] CANCADO L G,JORIO A,FERREIRA E H M,et al.Quantifying defects in graphene via Raman spectroscopy at different excitation energies[J].Nano Letters,2011,11(8):3190-3196.
[68] PARK J S,REINA A,SAITO R,et al.G'band Raman spectra of single,double and triple layer grapheme[J].Carbon,2009,47(5):1303-1310.
[69] MAFRA D L,SAMSONIDZE G G,MALARD L M,et al.Deterination of LA and TO phonon dispersion relations of grapehene near the Dirac point by double resonance Raman scattering[J].Physical Review B,2007,76(23):233407-1-233407-4.
[70] MALARD L M,PIMENTA M A,DRESSELHAUS G,et al.Raman spectroscopy in graphene[J].Physics Reports,2009,473(5):51-87.
[71] POCSIK I,HUNDHAUSEN M,KOOS M,et al.Origin of the D peak in the Raman spectrum of microcrystalline graphite[J].Journal of Non-Crystalline Solids,1998,227/230(1):1083-1086.
[72] CALIZO I,GHOSH S,BAO W Z,et al.Raman nanometrology of graphene:temperature and substrate effects[J].Solid State Communications,2009,149(27/28):1132-1135.
[73] 杰米.石墨烯:基础及新兴应用[M].北京:科学出版社,2014:199.WARNER J H.Graphene:fundamentals and emergent application[M].Beijing:Science Press,2014:199.
[1] 高亚辉, 尹国杰, 张少文, 王璐, 孟巧静, 李欣栋. 电化学法制备石墨烯的研究进展[J]. 材料工程, 2020, 48(8): 84-100.
[2] 钱伟, 何大平, 李宝文. 石墨烯基电磁屏蔽材料的研究进展[J]. 材料工程, 2020, 48(7): 14-23.
[3] 李娜, 张儒静, 甄真, 许振华, 何利民. 等离子体增强化学气相沉积可控制备石墨烯研究进展[J]. 材料工程, 2020, 48(7): 36-44.
[4] 郭建强, 李炯利, 梁佳丰, 李岳, 朱巧思, 王旭东. 氧化石墨烯的化学还原方法与机理研究进展[J]. 材料工程, 2020, 48(7): 24-35.
[5] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[6] 杨程, 时双强, 郝思嘉, 褚海荣, 戴圣龙. 石墨烯光催化材料及其在环境净化领域的研究进展[J]. 材料工程, 2020, 48(7): 1-13.
[7] 张传香, 陈亚玲, 巩云, 刘慧颖, 戴玉明, 丛园. 二硫化钼/石墨烯复合材料的一步水热合成及电催化性能[J]. 材料工程, 2020, 48(5): 56-61.
[8] 白明洁, 刘金龙, 齐志娜, 何江, 魏俊俊, 苗建印, 李成明. 石墨烯纳米流体研究进展[J]. 材料工程, 2020, 48(4): 46-59.
[9] 谢红梅, 蒋斌, 戴甲洪, 唐昌平, 李权, 潘复生. 石墨烯和氧化石墨烯水基润滑添加剂在镁合金冷轧中的摩擦学行为[J]. 材料工程, 2020, 48(3): 66-74.
[10] 陈乐, 董丽敏, 金鑫鑫, 付海洋, 李晓约. Y掺杂Mn3O4/石墨烯复合材料的电化学性能[J]. 材料工程, 2020, 48(2): 53-58.
[11] 陈航, 弭光宝, 李培杰, 王旭东, 黄旭, 曹春晓. 氧化石墨烯对600℃高温钛合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(9): 38-45.
[12] 徐鹏, 王冠韬, 刘奎, 罗斯达. 石墨烯/碳纳米管嵌入式纤维传感器对树脂基复合材料原位监测的结构-性能关系对比[J]. 材料工程, 2019, 47(9): 29-37.
[13] 宇文超, 刘秉国, 张立波, 郭胜惠, 彭金辉. 低温一步制备氧化石墨烯及微波还原研究[J]. 材料工程, 2019, 47(9): 21-28.
[14] 刘琳, 李莹, 鄂涛, 杨姝宜, 姜志刚, 许丽岩, 张天琪. 球状纳米二氧化钛/石墨烯复合材料的合成及导电性能[J]. 材料工程, 2019, 47(8): 97-102.
[15] 王晨, 燕绍九, 南文争, 陈翔. 表面活性剂对高浓度石墨烯水分散液制备的影响[J]. 材料工程, 2019, 47(7): 50-56.
Full text



版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持