Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (1): 25-31    DOI: 10.11868/j.issn.1001-4381.2016.001384
  石墨烯专栏 本期目录 | 过刊浏览 | 高级检索 |
石墨烯纳米片增韧Al2O3基纳米复合陶瓷刀具材料
孟祥龙1,2, 衣明东1,2, 肖光春1,2, 陈照强1,2, 许崇海1,2,3
1. 齐鲁工业大学 机械与汽车工程学院, 济南 250353;
2. 齐鲁工业大学 山东省高校轻工装备先进制造与测控技术重点实验室, 济南 250353;
3. 山东大学 机械工程学院, 济南 250061
Alumina-based nanocomposite ceramic cutting tool materials toughened by graphene nanoplates
MENG Xiang-long1,2, YI Ming-dong1,2, XIAO Guang-chun1,2, CHEN Zhao-qiang1,2, XU Chong-hai1,2,3
1. School of Mechanical and Automotive Engineering, Qilu University of Technology, Jinan 250353, China;
2. Key Laboratory of Advanced Manufacturing and Measurement & Control Technology for Light Industry in Universities of Shandong, Qilu University of Technology, Jinan 250353, China;
3. School of Mechanical Engineering, Shandong University, Jinan 250061, China
全文: PDF(7560 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 以石墨烯纳米片作为增强相,采用热压烧结工艺制备石墨烯纳米片增韧Al2O3基纳米复合陶瓷刀具材料。进行石墨烯纳米片分散实验,研究石墨烯纳米片添加量对刀具材料断裂韧度、抗弯强度和硬度的影响,观察其微观结构和形貌。结果表明:聚乙烯吡咯烷酮(PVP)为石墨烯纳米片的优选分散剂,当PVP添加量为石墨烯纳米片质量的60%时,分散效果最佳;当石墨烯纳米片添加量为0.75%(体积分数)时,刀具材料的断裂韧度和抗弯强度分别达到7.1MPa·m1/2和663MPa,与未添加石墨烯纳米片的组分相比分别提高了31%和15%;石墨烯纳米片呈卷曲状结构弥散分布于基体材料中,其增韧机理为石墨烯纳米片拉断、拔出和裂纹偏转。与未添加石墨烯的刀具相比,添加石墨烯纳米片的刀具的主切削力、切削温度和前刀面摩擦因数明显降低,表现出良好的减摩、耐磨性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孟祥龙
衣明东
肖光春
陈照强
许崇海
关键词 石墨烯纳米片增韧补强陶瓷刀具力学性能切削性能    
Abstract:Graphene nanoplates(GNPs), as toughening phase, toughened alumina-based nanocomposites ceramic cutting tool materials were fabricated by hot-pressing technology. The dispersing experiment of the GNPs was performed. The effects of different GNPs contents on the fracture toughness, flexural strength and hardness of the as-sintered ceramic cutting tool materials were investigated. The microstructure and morphology of GNPs were also observed. The results show that polyvinyl pyrrolidone(PVP) is the optimized dispersant of GNPs. When PVP addition is the 60%(mass fraction) of GNPs, the GNPs dispersion effect is the best. When GNPs addition is 0.75%(volume fraction), the fracture toughness and flexural strength of the cutting tool material reach up to 7.1MPa·m1/2 and 663MPa, which increase by 31% and 15% compared with that without GNPs addition cutting tool material. The crimped GNPs disperse well in the matrix material. The main toughening mechanisms include GNPs rupture, GNPs pull-out and cracks defection. Comparing with no GNPs addition cutting tool material, GNPs toughened cutting tool material shows lower main cutting force, cutting temperature and rake friction coefficient, and better wear resistance.
Key wordsgraphene nanoplate    toughening and strengthening    ceramic cutting tool    mechanical property    cutting performance
收稿日期: 2016-11-18      出版日期: 2019-01-16
中图分类号:  TG171  
  TQ174.75  
通讯作者: 许崇海(1971-),男,教授,博士,主要研究方向为高速高效切削加工与新型刀具材料,联系地址:山东省济南市长清区大学路3501号齐鲁工业大学机械与汽车工程学院(250353),E-mail:xch@qlu.edu.cn     E-mail: xch@qlu.edu.cn
引用本文:   
孟祥龙, 衣明东, 肖光春, 陈照强, 许崇海. 石墨烯纳米片增韧Al2O3基纳米复合陶瓷刀具材料[J]. 材料工程, 2019, 47(1): 25-31.
MENG Xiang-long, YI Ming-dong, XIAO Guang-chun, CHEN Zhao-qiang, XU Chong-hai. Alumina-based nanocomposite ceramic cutting tool materials toughened by graphene nanoplates. Journal of Materials Engineering, 2019, 47(1): 25-31.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.001384      或      http://jme.biam.ac.cn/CN/Y2019/V47/I1/25
[1] 贺旭东,明伟伟,景璐璐,等.高效加工刀具技术研究现状及发展趋势[J].航空制造技术,2016,502(7):55-59. HE X D,MING W W,JING L L,et al. Research status and development trend of high performance machining tools[J]. High Efficiency Machining Technology,2016,502(7):55-59.
[2] 何柏林,孙佳.陶瓷基复合材料增韧技术的研究进展[J].粉末冶金工业,2009,19(4):48-53. HE B L,SUN J. Progress in ceramic matrix composite toughening technology[J]. Powder Metallurgy Industry,2009,19(4):48-53.
[3] KITIWAN M,ATONG D. Preparation of Al2O3-TiC composites and their cutting performance[J]. Journal of Solid Mechanics & Materials Engineering,2007,1(7):938-946.
[4] LI X K,QIU G M,QIU T,et al. Al2O3/TiCN-0.2%Y2O3 composite prepared by hp and its cutting performance[J]. Journal of Rare Earths,2007,25(Suppl 1):37-41.
[5] LEE D Y,YOON D H. Properties of alumina matrix composites reinforced with SiC whisker and carbon nanotubes[J]. Ceramics International,2014,40(9):14375-14383.
[6] FAN J P,ZHAO D Q,WU M S,et al. Preparation and microstructure of multi-wall carbon nanotubes-toughened Al2O3 composite[J]. Journal of the American Ceramic Society,2006,89(2):750-753.
[7] NOVOSELOV K S,GEIM A K,MOROZOV S V,et al. Electric field effect in atomically thin carbon films[J]. Science,2004,306(5696):666-669.
[8] BOLOTIN K I,SIKES K J,JIANG Z,et al. Ultrahigh electron mobility in suspended graphene[J]. Solid State Communications,2008,146(9/10):351-355.
[9] BALANDIN A A,GHOSH S,BAO W,et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters,2008,8(3):902-907.
[10] LEE C,WEI X,KYSAR J W,et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science,2008,321(5887):385-388.
[11] PORWAL H,TATARKO P,GRASSO S,et al. Graphene reinforced alumina nano-composites[J]. Carbon,2013,64(11):359-369.
[12] MIRANZO P,GARCÍA E,RAMÍREZ C,et al. Anisotropic thermal conductivity of silicon nitride ceramics containing carbon nanostructures[J]. Journal of the European Ceramic Society,2012,32(8):1847-1854.
[13] MENG X L,XU C H,XIAO G C,et al. Microstructure and anisotropy of mechanical properties of graphene nanoplate toughened Al2O3-based ceramic composites[J]. Ceramic International,2016,42(14):16090-16095.
[14] 燕绍九,陈翔,洪起虎,等.石墨烯增强铝基纳米复合材料研究进展[J].航空材料学报,2016,36(3):57-70. YAN S J,CHEN X,HONG Q H,et al. Graphene reinforced aluminum matrix nanocomposites[J]. Journal of Aeronautical Materials,2016,36(3):57-70.
[15] 左银泽,陈亮,朱斌,等. 纳米氧化锌负载氧化石墨烯/环氧树脂复合材料性能研究[J].材料工程,2018,46(5):22-28. ZUO Y Z,CHEN L,ZHU B,et al. Properties of graphene oxide loaded by nano-ZnO/epoxy resin composites[J]. Journal of Materials Engineering,2018,46(5):22-28.
[16] 王飞,贾书海,唐振华,等.石墨烯纳米复合材料光驱动技术的研究进展[J].材料工程,2018,46(4):12-22. WANG F,JIA S H,TANG Z H,et al. Research progress on light-driven technology for graphene-based nanocomposites[J]. Journal of Materials Engineering,2018,46(4):12-22.
[17] CHEN Y F,BI J Q,YIN C L,et al. Microstructure and fracture toughness of graphene nanosheets/alumina composites[J]. Ceramics International,2014,40(9):13883-13889.
[18] CENTENO A,ROCHA V G,ALONSO B,et al. Graphene for tough and electro conductive alumina ceramics[J]. Journal of the European Ceramic Society,2013,33(15/16):3201-3210.
[19] 魏伟,吕伟,杨全红.高浓度石墨烯水系分散液及其气液界面自组装膜[J].新型炭材料,2011,26(1):36-40. WEI W,LV W,YANG Q H. High-concentration graphene aqueous suspension and a membrane self-assembled at the liquid-air interface[J]. New Carbon Materials,2011,26(1):36-40.
[20] KONIOS D,STYLIANAKIS M M,STRATAKIS E, et al. Dispersion behaviour of graphene oxide and reduced graphene oxide[J]. Journal of Colloid & Interface Science,2014,430:108-112.
[21] HU W Q,ZHU Z Z,JIN J,et al. Synthesis and characterization of liquid crystalline polyester/graphene and a study of their properties[J]. Journal of Nanoscience & Nanotechnology,2012,12(3):2477-2483.
[22] NIETO A,ZHAO J M,HAN Y H,et al. Microscale tribological behavior and in vitro biocompatibility of graphene nanoplatelet reinforced alumina[J]. Journal of the Mechanical Behavior of Biomedical Materials,2016,61:122-134.
[23] LENKA K,ANNAMARIA D,PAVOL H,et al. Fracture toughness and toughening mechanisms in graphene platelet reinforced Si3N4 composites[J]. Scripta Materialia,2012,66(10):793-796.
[24] MARIA M,ALEXANDRA K,ZOLTÁN K,et al. Tribological characterization of silicon nitride/multilayer graphene nanocomposites produced by HIP and SPS technology[J]. Tribology International,2016,93:269-281.
[25] 邓建新,曹同坤,艾兴. Al2O3/TiC/CaF2自润滑陶瓷刀具切削过程中的减摩机理[J]. 机械工程学报,2006,42(7):109-113. DENG J X,CAO T K,AI X. Friction reducing mechanisms of Al2O3/TiC/CaF2 self-lubricating ceramic tools in machining processes[J]. Journal of Mechanical Engineering,2006,42(7):109-113.
[1] 杨旭东, 安涛, 邹田春, 巩天琛. 湿热环境对碳纤维增强树脂基复合材料力学性能的影响及其损伤机理[J]. 材料工程, 2019, 47(7): 84-91.
[2] 王聃, 陶德华, 黄秀玲, 华子恺. 聚甲基丙稀酸羟乙酯甘油凝胶仿软骨材料的制备与性能[J]. 材料工程, 2019, 47(7): 71-75.
[3] 陈海龙, 杨学锋, 王守仁, 鹿重阳, 吴元博. 改性酚醛树脂陶瓷摩擦材料的摩擦磨损性能[J]. 材料工程, 2019, 47(6): 108-113.
[4] 刘文祎, 徐聪, 刘茂文, 肖文龙, 马朝利. 稀土元素Gd对Al-Si-Mg铸造合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(6): 129-135.
[5] 王飞云, 金建军, 江志华, 王晓震, 胡春文. 热处理温度对新型马氏体时效不锈钢微观组织和性能的影响[J]. 材料工程, 2019, 47(6): 152-160.
[6] 闫钊鸣, 张治民, 杜玥, 张冠世, 任璐英. 均匀化处理对Mg-13Gd-3.5Y-2Zn-0.5Zr镁合金组织和力学性能的影响[J]. 材料工程, 2019, 47(5): 93-99.
[7] 薛子明, 雷卫宁, 王云强, 钱海峰, 李奇林. 超临界条件下脉冲占空比对石墨烯复合镀层微观结构和性能的影响[J]. 材料工程, 2019, 47(5): 53-62.
[8] 李惠, 肖文龙, 张艺镡, 马朝利. 多重结构Ti-B4C/Al2024复合材料的组织和力学性能[J]. 材料工程, 2019, 47(4): 152-159.
[9] 崔岩, 项俊帆, 曹雷刚, 杨越, 刘园. 碳化硅颗粒表面吸附质对铝基复合材料制备及力学性能的影响[J]. 材料工程, 2019, 47(4): 160-166.
[10] 李亚锋, 礼嵩明, 黑艳伟, 邢丽英, 陈祥宝. 太阳辐照对芳纶纤维及其复合材料性能的影响[J]. 材料工程, 2019, 47(4): 39-46.
[11] 赵双赞, 燕绍九, 陈翔, 洪起虎, 李秀辉, 戴圣龙. 石墨烯纳米片增强铝基复合材料的动态力学行为[J]. 材料工程, 2019, 47(3): 23-29.
[12] 李灿, 陈文琳, 雷远. 微量Sr及均匀化工艺对Al-Mg-Si-Cu-Mn变形铝合金铸态组织与性能的影响[J]. 材料工程, 2019, 47(2): 90-98.
[13] 李秀辉, 燕绍九, 洪起虎, 赵双赞, 陈翔. 石墨烯添加量对铜基复合材料性能的影响[J]. 材料工程, 2019, 47(1): 11-17.
[14] 陈刚, 王璐, 杨静, 李强, 吕品, 马胜国. Al0.1CoCrFeNi高熵合金的力学性能和变形机理[J]. 材料工程, 2019, 47(1): 106-111.
[15] 黄高仁, 孙乙萌, 张利, 刘玉林. Mg含量对亚快速凝固Al-Zn-Mg-Cu-Zr合金组织与性能的影响[J]. 材料工程, 2018, 46(9): 109-114.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn