Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (12): 126-134    DOI: 10.11868/j.issn.1001-4381.2016.001511
  综述 本期目录 | 过刊浏览 | 高级检索 |
环糊精功能化碳纳米材料的制备及电化学分析研究进展
易银辉, 孙恒, 钱俊娟, 朱刚兵
江苏大学 环境与安全工程学院, 江苏 镇江 212013
Research Progress in Preparation of Cyclodextrin Functionalized Carbon Nanomaterials and Their Applications in Electrochemical Analysis
YI Yin-hui, SUN Heng, QIAN Jun-juan, ZHU Gang-bing
School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
全文: PDF(5573 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 环糊精(CD)是一种具有腔内疏水、腔外亲水特殊性质的分子,其内腔具有很高的分子识别和富集能力,同时外腔具有很好的溶解性。另外,碳纳米材料具有大的比表面积和良好的电学性能等优点,在电分析化学领域具有重大的应用价值,然而纯碳材料通常在溶剂中不易分散。因而发展有效的方法将CD功能化到碳纳米材料表面是一个非常有意义的课题:CD不但能使碳纳米材料的分散性得到改善,同时使其具有良好的分子识别与富集性能而表现出极高的电化学分析能力。本文主要论述了CD功能化各种碳纳米材料(碳纳米管、石墨烯、碳空心球等)的方法、原理以及在电化学分析中的应用,最后,简要论述了该领域所面临的挑战及未来的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
易银辉
孙恒
钱俊娟
朱刚兵
关键词 环糊精碳纳米管石墨烯碳球电分析化学    
Abstract:Cyclodextrin (CD) molecules have a toroidal shape with a hydrophobic inner cavity and a hydrophilic exterior. The hydrophobic inner cavity can enable CD molecules to show high molecular selectivity and enrichment capability, and the hydrophilic exterior can make CD have high solubility in various solvents. On the other hand, because of the large theoretical surface areas and excellent electrochemical properties of carbon nanomaterials, they have important potential applications in electroanalytical chemistry. However, pure carbon nanomaterials usually are insoluble in solvents. Thus, it's of great significance to functionalize carbon nanomaterials with CD:CD not only improves the dispersity of carbon nanomaterials, but also enables high molecular selectivity and enrichment capacity, and hence shows extremely high electroanalytical capability. This review shows the methods and mechanism for preparing CD functionalized carbon nanomaterials (carbon nanotube, graphene, hollow carbon sphere,etc.) and their applications in electroanalytical chemistry. Finally, some critical challenges and prospects in this field were also briefly discussed.
Key wordscyclodextrin    carbon nanotube    graphene    hollow carbon sphere    electroanalytical chemistry
收稿日期: 2016-12-15      出版日期: 2017-12-19
中图分类号:  O657.1  
通讯作者: 朱刚兵(1985-),男,博士,副教授,硕士研究生导师,研究方向为电化学分析,联系地址:江苏省镇江市学府路301号江苏大学环境与安全工程学院主A楼512室(212013),E-mail:zhgb1030@ujs.edu.cn     E-mail: zhgb1030@ujs.edu.cn
引用本文:   
易银辉, 孙恒, 钱俊娟, 朱刚兵. 环糊精功能化碳纳米材料的制备及电化学分析研究进展[J]. 材料工程, 2017, 45(12): 126-134.
YI Yin-hui, SUN Heng, QIAN Jun-juan, ZHU Gang-bing. Research Progress in Preparation of Cyclodextrin Functionalized Carbon Nanomaterials and Their Applications in Electrochemical Analysis. Journal of Materials Engineering, 2017, 45(12): 126-134.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.001511      或      http://jme.biam.ac.cn/CN/Y2017/V45/I12/126
[1] LI F, ITO T. Complexation-induced control of electron propagation based on bounded diffusion through nanopore-tethered ferrocenes[J]. Journal of the American Chemical Society, 2013, 135(44):16260-16263.
[2] GONG J, HAN X, ZHU X, et al. Layer-by-layer assembled multilayer films of exfoliated layered double hydroxide and carboxymethyl-β-cyclodextrin for selective capacitive sensing of acephatemet[J]. Biosensors and Bioelectronics, 2014, 61:379-385.
[3] SZENTE L, SZEMÁN J. Cyclodextrins in analytical chemistry:Host-guest type molecular recognition[J]. Analytical Chemistry, 2013, 85(17):8024-8030.
[4] NI J, SHAN C, LI B, et al. Assembling of a functional cyclodextrin-decorated upconversion luminescence nanoplatform for cysteine-sensing[J]. Chemical Communications, 2015, 51(74):14054-14056.
[5] YAO J, YAN Z, JI J, et al. Ammonia-driven chirality inversion and enhancement in enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylate mediated by diguanidino-γ-cyclodextrin[J]. Journal of the American Chemical Society, 2014, 136(19):6916-6919.
[6] WU S, HE Q, TAN C, et al. Graphene-based electrochemical Sensors[J]. Small, 2013, 9(8):1160-1172.
[7] WOOTEN M, KARRA S, ZHANG M, et al. On the direct electron transfer, sensing, and enzyme activity in the glucose oxidase/carbon nanotubes system[J]. Analytical Chemistry, 2013, 86(1):752-757.
[8] CHEN A, CHATTERJEE S. Nanomaterials based electrochemical sensors for biomedical applications[J]. Chemical Society Reviews, 2013, 42(12):5425-5438.
[9] 寻艳, 曹忠, 宋天铭, 等. MWCNTs-rGO/PDDA-AuNPs复合膜修饰电极对莱克多巴胺的灵敏检测[J]. 高等学校化学学报, 2016, 37(5):835-843. XUN Y, CAO Z, SONG T M, et al. MWCNTs-rGO/PDDA-AuNPs nanocomposite modified electrode for sensitive detection of ractopamine[J]. Chemical Journal of Chinese Universities, 2016, 37(5):835-843.
[10] YANG L, FAN S, DENG G, e al. Bridged β-cyclodextrin-functionalized MWCNT with higher supramolecular recognition capability:the simultaneous electrochemical determination of three phenols[J].Biosensors and Bioelectronics,2015,68:617-625.
[11] QIAN T, WU S, SHEN J. Facilely prepared polypyrrole-reduced graphite oxide core-shell microspheres with high dispersibility for electrochemical detection of dopamine[J]. Chemical Communications, 2013, 49(41):4610-4612.
[12] POLO-LUQUE M, SIMONET B, VALCÁRCEL M. Functionalization and dispersion of carbon nanotubes in ionic liquids[J]. TrAC Trends in Analytical Chemistry, 2013, 47:99-110.
[13] WANG L, ZHANG Q, CHEN S, et al. Electrochemical sensing and biosensing platform based on biomass-derived macroporous carbon materials[J]. Analytical Chemistry, 2014, 86(3):1414-1421.
[14] PEIGNEY A, LAURENT C, FLAHAUT E, et al. Specific surface area of carbon nanotubes and bundles of carbon nanotubes[J]. Carbon, 2001, 39(4):507-514.
[15] KANETO K, TSURUTA M, SAKAI G, et al. Electrical conductivities of multi-wall carbon nano tubes[J]. Synthetic Metals, 1999, 103(1):2543-2546.
[16] 郭伟玲, 李恩重, 王海斗, 等. MWCNTs催化Ru (bpy)32+阴极电致化学发光[J]. 材料工程, 2013(12):63-67. GUO W L, LI E Z, WANG H D, et al. Cathodic electrogenerated chemiluminescence of Ru(bpy)32+ catalyzed by MWCNTs[J]. Journal of Materials Engineering, 2013(12):63-67.
[17] HE J L, YANG Y, YANG X, et al. β-Cyclodextrin incorporated carbon nanotube-modified electrode as an electrochemical sensor for rutin[J]. Sensors and Actuators B:Chemical, 2006, 114(1):94-100.
[18] YOGESWARAN U, THIAGARAJAN S, CHEN S M. Pinecone shape hydroxypropyl-β-cyclodextrin on a film of multi-walled carbon nanotubes coated with gold particles for the simultaneous determination of tyrosine, guanine, adenine and thymine[J]. Carbon, 2007, 45(14):2783-2796.
[19] YU Q, LIU Y, LIU X, et al. Simultaneous determination of dihydroxybenzene isomers at MWCNTs/β-cyclodextrin modified carbon ionic liquid electrode in the presence of cetylpyridinium bromide[J]. Electroanalysis, 2010, 22(9):1012-1018.
[20] LIAN W, HUANG J, YU J, et al. A molecularly imprinted sensor based on β-cyclodextrin incorporated multiwalled carbon nanotube and gold nanoparticles-polyamide amine dendrimer nanocomposites combining with water-soluble chitosan derivative for the detection of chlortetracycline[J]. Food Control, 2012, 26(2):620-627.
[21] SHEN Q, WANG X. Simultaneous determination of adenine, guanine and thymine based on β-cyclodextrin/MWNTs modified electrode[J]. Journal of Electroanalytical Chemistry, 2009, 632(1):149-153.
[22] ZHANG W, CHEN M, GONG X, et al. Universal water-soluble cyclodextrin polymer-carbon nanomaterials with supramolecular recognition[J]. Carbon, 2013, 61:154-163.
[23] WEI Y, KONG L T, YANG R, et al. Electrochemical impedance determination of polychlorinated biphenyl using a pyrenecyclodextrin-decorated single-walled carbon nanotube hybrid[J]. Chemical Communications, 2011, 47(18):5340-5342.
[24] WEI Y, KONG L T, YANG R, et al. Single-walled carbon nanotube/pyrenecyclodextrin nanohybrids for ultrahighly sensitive and selective detection of p-nitrophenol[J]. Langmuir, 2011, 27(16):10295-10301.
[25] ZHU G, ZHANG X, GAI P, et al. β-cyclodextrin non-covalently functionalized single-walled carbon nanotubes bridged by 3, 4, 9, 10-perylene tetracarboxylic acid for ultrasensitive electrochemical sensing of 9-anthracenecarboxylic acid[J]. Nanoscale, 2012, 4(18):5703-5709.
[26] KONG L, WANG J, MENG F, et al. Novel hybridized SWCNT-PCD:synthesis and host-guest inclusion for electrical sensing recognition of persistent organic pollutants[J]. Journal of Materials Chemistry, 2011, 21(30):11109-11115.
[27] GAO Y, CAO Y, YANG D, et al. Sensitivity and selectivity determination of bisphenol A using SWCNT-CD conjugate modified glassy carbon electrode[J]. Journal of Hazardous Materials, 2012, 199:111-118.
[28] LIU R, MAHURIN S M, LI C, et al. Dopamine as a carbon source:The controlled synthesis of hollow carbon spheres and yolk-structured carbon nanocomposites[J]. Angewandte Chemie, 2011, 123(30):6931-6934.
[29] CHAE H K, SIBERIO-PÉREZ D Y, KIM J, et al. A route to high surface area, porosity and inclusion of large molecules in crystals[J]. Nature, 2004, 427(6974):523-527.
[30] REINA A, JIA X, HO J, et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition[J]. Nano Letters, 2008, 9(1):30-35.
[31] PUMERA M, AMBROSI A, BONANNI A, et al. Graphene for electrochemical sensing and biosensing[J]. TrAC Trends in Analytical Chemistry, 2010, 29(9):954-965.
[32] 吕生华, 李莹, 杨文强, 等. 氧化石墨烯/壳聚糖生物复合材料的制备及应用研究进展[J]. 材料工程, 2016, 44(10):119-128. LYU S H, LI Y, YANG W Q, et al. Research progress on preparation and application of graphene oxide/chitosan biocomposites[J]. Journal of Materials Engineering, 2016, 44(10):119-128.
[33] PUMERA M. The electrochemistry of carbon nanotubes:fundamentals and applications[J]. Chemistry-A European Journal, 2009, 15(20):4970-4978.
[34] MARTIN A, ESCARPA A. Graphene:the cutting-edge interaction between chemistry and electrochemistry[J]. TrAC Trends in Analytical Chemistry, 2014, 56:13-26.
[35] GEIM A, NOVOSELOV K, YAZYEV O V, et al. Nobel Prize for graphene[J]. Nature Materials, 2007, 6:183-192.
[36] GUO Y, GUO S, REN J, et al. Cyclodextrin functionalized graphene nanosheets with high supramolecular recognition capability:synthesis and host-guest inclusion for enhanced electrochemical performance[J]. Acs Nano, 2010, 4(7):4001-4010.
[37] GUO Y, GUO S, LI J, et al. Cyclodextrin-graphene hybrid nanosheets as enhanced sensing platform for ultrasensitive determination of carbendazim[J]. Talanta, 2011, 84(1):60-64.
[38] WEI M, TIAN D, LIU S, et al. β-Cyclodextrin functionalized graphene material:A novel electrochemical sensor for simultaneous determination of 2-chlorophenol and 3-chlorophenol[J]. Sensors and Actuators B:Chemical, 2014, 195:452-458.
[39] LIU Z, MA X, ZHANG H, et al. Simultaneous determination of nitrophenol isomers based on β-Cyclodextrin functionalized reduced graphene oxide[J]. Electroanalysis, 2012, 24(5):1178-1185.
[40] GUO Y, CHEN Y, ZHAO Q, et al. Electrochemical sensor for ultrasensitive determination of doxorubicin and methotrexate based on cyclodextrin-graphene hybrid nanosheets[J]. Electroanalysis, 2011, 23(10):2400-2407.
[41] AGNIHOTRI N, CHOWDHURY A D, DE A. Non-enzymatic electrochemical detection of cholesterol using β-cyclodextrin functionalized graphene[J]. Biosensors and Bioelectronics, 2015, 63:212-217.
[42] ZOR E, ESAD SAGLAM M, ALPAYDIN S, et al. A reduced graphene oxide/α-cyclodextrin hybrid for the detection of methionine:Electrochemical, fluorometric and computational studies[J]. Analytical Methods, 2014, 6(16):6522-6530.
[43] ZHU G, GAI P, WU L, et al. β-Cyclodextrin-platinum nanoparticles/graphene nanohybrids:Enhanced sensitivity for electrochemical detection of naphthol isomers[J]. Chemistry-An Asian Journal, 2012, 7(4):732-737.
[44] XU C, WANG J, WAN L, et al. Microwave-assisted covalent modification of graphene nanosheets with hydroxypropyl-β-cyclodextrin and its electrochemical detection of phenolic organic pollutants[J]. Journal of Materials Chemistry, 2011, 21(28):10463-10471.
[45] LV M, WANG X, LI J, et al. Cyclodextrin-reduced graphene oxide hybrid nanosheets for the simultaneous determination of lead (Ⅱ) and cadmium (Ⅱ) using square wave anodic stripping voltammetry[J]. Electrochimica Acta, 2013, 108:412-420.
[46] LIU Y, AI K, LU L. Polydopamine and its derivative materials:Synthesis and promising applications in energy, environmental, and biomedical fields[J]. Chemical Reviews, 2014,114(9):5057-5115.
[47] FENG W, LIU C, LU S, et al. Electrochemical chiral recognition of tryptophan using a glassy carbon electrode modified with β-cyclodextrin and graphene[J]. Microchimica Acta, 2014, 181(5/6):501-509.
[48] KIM K H, OH Y, ISLAM M. Graphene coating makes carbon nanotube aerogels superelastic and resistant to fatigue[J]. Nature Nanotechnology, 2012, 7(9):562-566.
[49] LIU J, LENG X, XIAO Y, et al. 3D nitrogen-doped graphene/β-cyclodextrin:host-guest interactions for electrochemical sensing[J]. Nanoscale, 2015, 7(28):11922-11927.
[50] WU S, LAN X, HUANG F, et al. Selective electrochemical detection of cysteine in complex serum by graphene nanoribbon[J]. Biosensors and Bioelectronics, 2012, 32(1):293-296.
[51] PUMERA M, BONANNI A. Electrochemically reduced graphene nanoribbons:Interference from inherent electrochemistry of the material in DPV studies[J]. Electrochemistry Communications, 2014, 46:137-139.
[52] ZHU G, YI Y, LIU Z, et al. Highly sensitive electrochemical sensing based on 2-hydroxypropyl-β-cyclodextrin-functionalized graphene nanoribbons[J]. Electrochemistry Communications, 2016, 66:10-15.
[53] YI Y, ZHU G, WU X, et al. Highly sensitive and simultaneous electrochemical determination of 2-aminophenol and 4-aminophenol based on poly (L-arginine)-β-cyclodextrin/carbon nanotubes@graphene nanoribbons modified electrode[J]. Biosensors and Bioelectronics, 2016, 77:353-358.
[54] ZHU X, JIAO Q, ZUO X, et al. An electrochemical sensor based on carbon nano-fragments and β-cyclodextrin composite-modified glassy carbon electrode for the determination of rutin[J]. Journal of the Electrochemical Society, 2013, 160(10):H699-H703.
[55] OU J, ZHU Y, KONG Y, et al. Graphene quantum dots/β-cyclodextrin nanocomposites:A novel electrochemical chiral interface for tryptophan isomer recognition[J]. Electrochemistry Communications, 2015, 60:60-63.
[56] XIAO Q, LU S, HUANG C, et al. Novel N-doped carbon dots/β-cyclodextrin nanocomposites for enantioselective recognition of tryptophan enantiomers[J]. Sensors, 2016, 16(11):1874.
[57] ZHANG C, WU H B, YUAN C, et al. Confining sulfur in double-shelled hollow carbon spheres for lithium-sulfur batteries[J]. Angewandte Chemie, 2012, 124(38):9730-9733.
[58] ZHU G, YI Y, SUN H, et al. Cyclodextrin-functionalized hollow carbon nanospheres by introducing nanogold for enhanced electrochemical sensing of o-dihydroxybenzene and p-dihydroxybenzene[J]. Journal of Materials Chemistry B, 2015, 3(1):45-52.
[1] 王晨, 燕绍九, 南文争, 陈翔. 表面活性剂对高浓度石墨烯水分散液制备的影响[J]. 材料工程, 2019, 47(7): 50-56.
[2] 赵晓华, 魏崇, 苏帅, 崔佳宝, 周建国, 李彩珠, 娄向东. Ag3PO4/ZnO@碳球三元异质结的合成及可见光催化性能[J]. 材料工程, 2019, 47(7): 76-83.
[3] 崔超婕, 田佳瑞, 杨周飞, 金鹰, 董卓娅, 谢青, 张刚, 叶珍珍, 王瑾, 刘莎, 骞伟中. 石墨烯在锂离子电池和超级电容器中的应用展望[J]. 材料工程, 2019, 47(5): 1-9.
[4] 薛子明, 雷卫宁, 王云强, 钱海峰, 李奇林. 超临界条件下脉冲占空比对石墨烯复合镀层微观结构和性能的影响[J]. 材料工程, 2019, 47(5): 53-62.
[5] 蔡满园, 孙晓刚, 陈玮, 邱治文, 陈珑, 刘珍红, 聂艳艳. 以预锂化多壁碳纳米管为负极的锂离子电容器性能[J]. 材料工程, 2019, 47(5): 145-152.
[6] 王晨, 燕绍九, 南文争, 王继贤, 彭思侃. 高浓度石墨烯水分散液的制备与表征[J]. 材料工程, 2019, 47(4): 56-63.
[7] 卢子龙, 安立宝, 刘扬. 不同浓度硼掺杂石墨烯吸附多层金原子的第一性原理研究[J]. 材料工程, 2019, 47(4): 64-70.
[8] 李芹, 盛利成, 董丽敏, 张彦飞, 金立国. ZnCo2O4及ZnCo2O4/rGO复合材料的制备与电化学性能[J]. 材料工程, 2019, 47(4): 71-76.
[9] 王继刚, 余永志, 邹婧叶, 孟江, 李淑萍, 蒋南. 基于微波辐照合成类石墨烯氮化碳的研究进展[J]. 材料工程, 2019, 47(4): 15-24.
[10] 邹婧叶, 余永志, 顾永攀, 岳夏薇, 孟江, 李淑萍, 王继刚. 高能微波辐照合成类石墨烯氮化碳纳米片的结构特征[J]. 材料工程, 2019, 47(3): 1-7.
[11] 赵双赞, 燕绍九, 陈翔, 洪起虎, 李秀辉, 戴圣龙. 石墨烯纳米片增强铝基复合材料的动态力学行为[J]. 材料工程, 2019, 47(3): 23-29.
[12] 余煜玺, 夏范森, 黄奇凡. 石墨烯改性PDC-SiCNO陶瓷的制备及其介电性能[J]. 材料工程, 2019, 47(3): 8-14.
[13] 杨宇凯, 张宝, 王旭东, 张虎生, 武岳, 关永军. 石墨烯及碳化硅增强铝基复合材料的冲击力学行为[J]. 材料工程, 2019, 47(3): 15-22.
[14] 张丹丹, 沈洪雷, 曹霞, 叶煜松, 张啸, 叶历, 王梦秋. 石墨烯增强金属基航空复合材料研究进展[J]. 材料工程, 2019, 47(1): 1-10.
[15] 李秀辉, 燕绍九, 洪起虎, 赵双赞, 陈翔. 石墨烯添加量对铜基复合材料性能的影响[J]. 材料工程, 2019, 47(1): 11-17.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn