Please wait a minute...
 
材料工程  2016, Vol. 44 Issue (2): 49-55    DOI: 10.11868/j.issn.1001-4381.2016.02.008
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
氮掺杂碳纳米管/铝基复合材料的制备及性能
何卫, 王利民, 蔡炜, 汤超, 姚辉
国网电力科学研究院 武汉南瑞有限责任公司, 武汉 430074
Preparation and Properties of Nitrogen-doped Carbon Nanotubes/Aluminium Matrix Composite
HE Wei, WANG Li-min, CAI Wei, TANG Chao, YAO Hui
Wuhan NARI Co., Ltd., State Grid Electric Power Research Institute, Wuhan 430074, China
全文: PDF(2317 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用化学气相沉积法合成出氮原子掺杂的碳纳米管,再将其与铝基体进行复合制备出碳纳米管/铝基复合材料。运用TEM和XPS研究氮掺杂碳纳米管的结构形貌和掺杂形态,并对碳纳米管/铝基复合材料的力学和电学性能进行研究与分析。结果表明:碳纳米管呈现出竹节状周期性多层结构,且成功掺杂氮原子。与纯碳纳米管相比,基于氮掺杂碳纳米管的铝基复合材料具有更高的抗拉强度和电导率。由于氮原子的引入,改善了碳纳米管的分散度和浸润性,提升了其电子传递效率,从而更有利于其在金属基复合材料中的应用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何卫
王利民
蔡炜
汤超
姚辉
关键词 氮掺杂碳纳米管铝基复合材料粉末冶金电导率    
Abstract:The nitrogen-doped carbon nanotubes were synthesized by chemical vapour deposition, and then added into aluminium matrix to get carbon nanotubes/aluminum matrix composites. The structure and doping pattern of the nitrogen-doped carbon nanotubes were characterized by TEM and XPS, and also research and analysis were carried out on the mechanical and electrical properties of the aluminium-based composites. The results show that carbon nanotubes exhibit a periodic multilayer bamboo-like structure and nitrogen atoms are doped successfully. Compared with pure carbon nanotubes, the nitrogen-doped carbon nanotubes/aluminium matrix composite has a higher tensile strength and electrical conductivity. The incorporation of nitrogen atoms improves the dispersion and wetting characteristic of carbon nanotubes, enhances its efficiency of electron transfer, and thus benefits its applications in metal matrix composites.
Key wordsnitrogen-doped carbon nanotube    aluminium matrix composite    powder metallurgy    electrical conductivity
收稿日期: 2015-01-26      出版日期: 2016-02-22
1:  TB331  
通讯作者: 何卫(1986-),男,工程师,博士,现从事碳纳米管改性铝合金材料的研制及其应用技术研究,联系地址:武汉市洪山区珞瑜路143号(430074),E-mail:hewei7@sgepri.sgcc.com.cn     E-mail: hewei7@sgepri.sgcc.com.cn
引用本文:   
何卫, 王利民, 蔡炜, 汤超, 姚辉. 氮掺杂碳纳米管/铝基复合材料的制备及性能[J]. 材料工程, 2016, 44(2): 49-55.
HE Wei, WANG Li-min, CAI Wei, TANG Chao, YAO Hui. Preparation and Properties of Nitrogen-doped Carbon Nanotubes/Aluminium Matrix Composite. Journal of Materials Engineering, 2016, 44(2): 49-55.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.02.008      或      http://jme.biam.ac.cn/CN/Y2016/V44/I2/49
[1] BAKSHI S R, LAHIRI D, AGARWAL A. Carbon nanotube reinforced metal matrix composites-A review[J]. International Materials Reviews, 2010, 55(1):41-64.
[2] BOESL B, LAHIRI D, BEHDAD S, et al. Direct observation of carbon nanotube induced strengthening in aluminum composite via in situ tensile tests[J]. Carbon, 2014, 69:79-85.
[3] HJORTSTAM O, ISBERG P, ODERHOLM S S, et al. Can we achieve ultra-low resistivity in carbon nanotube-based metal composites?[J]. Applied Physics A, 2004,(78):1175-1179.
[4] SONG H, ZHA X. Influence of nickel coating on the interfacial bonding characteristics of carbon nanotube-aluminum composites[J]. Computational Materials Science, 2010, 49(4):899-903.
[5] 曹茂盛,邱成军,朱静. 碳纳米管表面修饰的研究进展[J]. 航空材料学报, 2003, 23(4):59-62. CAO M S, QIU C J, ZHU J. Recent development on surface decoration of carbon nanotubes[J]. Journal of Aeronautical Materials, 2003, 23(4):59-62.
[6] TJONG S C. Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets[J]. Materials Science and Engineering:Reports, 2013, 74(10):281-350.
[7] CHIZARI K, SUNDARARAJ U. The effects of catalyst on the morphology and physicochemical properties of nitrogen-doped carbon nanotubes[J]. Materials Letters, 2014, 116:289-292.
[8] KANETO K, TSURUTA M, SAKAI G, et al. Electrical conductivities of multi-wall carbon nanotubes[J]. Synthetic Metals, 1999, 103(1-3):2543-2546.
[9] WEI J, HU H, ZENG H, et al. Effects of nitrogen substitutional doping on the electronic transport of carbon nanotube[J]. Physica E:Low-dimensional Systems and Nanostructures, 2008, 40(3):462-466.
[10] KANNINEN P, BORGHEI M, SORSA O, et al. Highly efficient cathode catalyst layer based on nitrogen-doped carbon nanotubes for the alkaline direct methanol fuel cell[J]. Applied Catalysis B:Environmental, 2014, 156-157:341-349.
[11] CHEN X, WAN L, HUANG J, et al. Nitrogen-containing carbon nanostructures:A promising carrier for catalysis of ammonia borane dehydrogenation[J]. Carbon, 2014, 68:462-472.
[12] 张宇,温斌,宋肖阳,等. 不同氮掺杂浓度碳纳米管的制备及其成键特性分析[J]. 物理学报, 2010, 59(5):3583-3588. ZHANG Y, WEN B, SONG X Y, et al. Synthesis and bonding properties of carbon nanotubes with different nitrogen contents[J]. Acta Physica Sinica, 2010, 59(5):3583-3588.
[13] WEI H, LI Z, XIONG D, et al. Towards strong and stiff carbon nanotube-reinforced high-strength aluminum alloy composites through a microlaminated architecture design[J]. Scripta Materialia, 2014, 75:30-33.
[14] 李玲,林奎,张帆,等. 氮掺杂长竹节状碳纳米管的制备及其生长机理[J]. 无机化学学报, 2014,(5):1097-1103. LI L, LIN K, ZHANG F, et al. Preparation of N-doped long bamboo-like carbon nanotubes and their growth mechanism[J]. Chinese Journal of Inorganic Chemistry, 2014,(5):1097-1103.
[15] CHANG S, LI T, LIN T. Significant morphology dependence on nitrogen proportion in growing carbon nanotubes[J]. Materials Letters, 2008, 62(12-13):1893-1895.
[16] ZHANG Y, LIU C, WEN B, et al. Preparation and electrochemical properties of nitrogen-doped multi-walled carbon nanotubes[J]. Materials Letters, 2011, 65(1):49-52.
[17] 陈亚光,蔡晓兰,王开军,等. 高能球磨法制备的CNTs/Al-5%Mg复合材料的力学性能及断裂特性[J]. 材料工程, 2014,(11):55-61. CHEN Y G, CAI X L, WANG K J, et al. Mechanical properties and fracture feature of CNTS/Al-5%Mg composite prepared by high-energy ball milling[J]. Journal of Materials Engineering, 2014,(11):55-61.
[18] LIU Q, PU Z, ASIRI A M, et al. Bamboo-like nitrogen-doped carbon nanotubes toward fluorescence recovery assay for DNA detection[J]. Sensors and Actuators B:Chemical, 2015, 206:37-42.
[19] CHIZARI K, VENA A, LAURENTIUS L, et al. The effect of temperature on the morphology and chemical surface properties of nitrogen-doped carbon nanotubes[J]. Carbon, 2014, 68:369-379.
[20] 李莉香,刘永长,耿新,等. 氮掺杂碳纳米管的制备及其电化学性能[J]. 物理化学学报, 2011, 27(2):443-448. LI L X, LIU Y C, GENG X, et al. Synthesis and electrochemical performance of nitrogen-doped carbon nanotubes[J]. Acta Physic-Chimica Sinica, 2011, 27(2):443-448.
[21] ESAWI A M K, MORSI K, SAYED A, et al. Fabrication and properties of dispersed carbon nanotube-aluminum composites[J]. Materials Science and Engineering:A, 2009, 508(1-2):167-173.
[22] 高伟洁,郭淑静,张洪波,等. 氮掺杂碳纳米管对其负载的Ru催化剂上合成氨的促进作用[J]. 催化学报, 2011, 32(8):1418-1423. GAO W J, GUO S J, ZHANG H B, et al. Enhanced ammonia synthesis activity of Ru supported on nitrogen-doped carbon nanotubes[J]. Chinese Journal of Catalysis, 2011, 32(8):1418-1423.
[23] GEORGE R, KASHYAP K T, RAHUL R, et al. Strengthening in carbon nanotubealuminium(CNTAl) composites[J]. Scripta Materialia, 2005, 53:1159-1163.
[24] XU C L, WEI B Q, MA R Z, et al. Fabrication of aluminum-carbon nanotube composites and their electrical properties[J]. Carbon, 1999, 37(5):855-858.
[25] UDDIN S M, MAHMUD T, WOLF C, et al. Effect of size and shape of metal particles to improve hardness and electrical properties of carbon nanotube reinforced copper and copper alloy composites[J]. Composites Science and Technology, 2010, 70(16):2253-2257.
[26] LIU Z Y, XIAO B L, WANG W G, et al. Tensile strength and electrical conductivity of carbon nanotube reinforced aluminum matrix composites fabricated by powder metallurgy combined with friction stir processing[J]. Journal of Materials Science & Technology, 2014, 30(7):649-655.
[27] MOUSAVI H, MORADIAN R. Nitrogen and boron doping effects on the electrical conductivity of graphene and nanotube[J]. Solid State Sciences, 2011, 13(8):1459-1464.
[28] 梁彤祥,刘娟,王晨. 石墨烯的电子结构及其应用进展[J]. 材料工程, 2014,(6):89-96. LIANG T X, LIU J, WANG C. Electronic structure of graphene and its application advances[J]. Journal of Materials Engineering, 2014,(6):89-96.
[29] 李静. 硼掺杂碳纳米管的制备及其在镁基复合材料中的应用[D]. 天津:天津大学, 2011.
[30] 王昆鹏,师春生,赵乃勤,等. B(N)掺杂单壁碳纳米管的Al原子吸附性能的第一性原理研究[J]. 物理学报, 2008, 57(12):7833-7840. WANG K P, SHI C S, ZHAO N Q, et al. First-principle study of the effect of boron(nitrogen)-doping on adsorbing characteristics of aluminum on single-walled carbon nanotubes[J]. Acta Physica Sinica, 2008, 57(12):7833-7840.
[31] 赵素,刘政,张新兵. 纳米碳管增强铝基复合材料的工艺及性能研究[J]. 铸造技术, 2006,(2):135-138. ZHAO S, LIU Z, ZHANG X B. Technical process and mechanical properties of carbon nanotubes reinforced aluminum matrix composites[J]. Foundry Technology, 2006,(2):135-138.
[1] 夏伶勤, 韩建民, 崔世海, 杨智勇, 李卫京. SiCp/A356复合材料微弧氧化陶瓷膜的生长规律与性能[J]. 材料工程, 2016, 44(1): 40-46.
[2] 李敬勇, 刘涛, 郭宇文. 搅拌摩擦加工铝基复合材料的高温摩擦磨损性能[J]. 材料工程, 2015, 43(6): 21-25.
[3] 丁雨田, 王冬强, 胡勇, 彭和思, 马国俊. Mg2B2O5W,SiC和Gr颗粒增强6061Al基复合材料的摩擦磨损行为[J]. 材料工程, 2015, 43(10): 42-48.
[4] 禹胜林, 薛松柏, 尹邦跃, 黄薇. Al-Si电子封装材料粉末冶金法致密性研究[J]. 材料工程, 2014, 0(2): 45-50.
[5] 刘慧敏, 王楠, 苏娟. 原位Al2O3/Al-Cu复合材料的制备与组织研究[J]. 材料工程, 2014, 0(11): 23-27.
[6] 陈亚光, 蔡晓兰, 王开军, 胡翠, 孙鸿鹏, 乐刚. 高能球磨法制备的CNTs/Al-5%Mg复合材料的力学性能及断裂特性[J]. 材料工程, 2014, 0(11): 55-61.
[7] 李文龙, 夏春, 邢丽, 柯黎明. 搅拌针形状对搅拌摩擦加工制备CNTs/铝基复合材料均匀性的影响[J]. 材料工程, 2014, 0(1): 75-78,84.
[8] 张家敏, 易健宏, 甘国友, 严继康, 杜景红, 刘意春. 烧结TiH2粉末制备钛合金的工艺及组织[J]. 材料工程, 2013, 0(10): 64-70.
[9] 张志华, 潘复生, 陈先华, 刘娟. 镁及其合金的电磁屏蔽性能研究[J]. 材料工程, 2013, 0(1): 52-57.
[10] 王攀, 郑玉婴, 李宝铭, 张通. PVPy/MWNTs纳米复合材料的制备及其导电性能研究[J]. 材料工程, 2012, 0(7): 71-75.
[11] 刘慧敏, 杨树青, 许萍, 李进福. 原位Al2O3P/7075复合材料微观组织与磨损行为[J]. 材料工程, 2012, 0(11): 1-5.
[12] 雷玉成, 刘珍珍, 薛厚禄, 胡文祥, 陈希章, 闫久春. SiCp/6061Al原位合金化焊接增强相界面微结构分析[J]. 材料工程, 2012, 0(1): 55-58.
[13] 郑育英, 廖世军, 黄慧民, 王俏运. NiO-YSZ纳米复合粉体的制备及其表征[J]. 材料工程, 2011, 0(8): 68-71.
[14] 陈进, 张海燕, 刘晓平, 李丽萍. 碳包铜纳米颗粒的制备及其性能研究[J]. 材料工程, 2011, 0(7): 31-33,89.
[15] 刘慧敏, 宋振东, 许萍, 张晶. TiC/7075铝基复合材料的磨损实验研究[J]. 材料工程, 2011, 0(7): 66-69,74.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn