Please wait a minute...
 
材料工程  2016, Vol. 44 Issue (2): 63-68    DOI: 10.11868/j.issn.1001-4381.2016.02.010
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
纳米ZnO/改性氢化蓖麻油复合材料的制备及性能
段力民1,3, 马建中1,2, 吕斌1,2, 鲁娟3, 吴雄虎3
1. 陕西科技大学 资源与环境学院, 西安 710021;
2. 陕西农产品加工技术研究院, 西安 710021;
3. 中国皮革和制鞋工业研究院, 北京 100016
Preparation and Properties of Nano-ZnO/Modified Hydrogenated Castor Oil Composites
DUAN Li-min1,3, MA Jian-zhong1,2, LYU Bin1,2, LU Juan3, WU Xiong-hu3
1. College of Resources and Environment, Shaanxi University of Science & Technology, Xi'an 710021, China;
2. Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China;
3. China Leather and Footwear Industry Research Institute, Beijing 100016, China
全文: PDF(2467 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 为改善纳米ZnO在油相有机介质中的分散性,采用异丙基三(二辛基焦磷酸酰氧基)钛酸酯(NDZ201)对纳米ZnO进行改性。采用扫描电镜(SEM)对改性后纳米ZnO的形貌进行表征,利用红外光谱仪(FTIR)对改性后纳米ZnO的结构进行表征,通过紫外-可见分光光度计(UV-Vis)及接触角测试仪(CA)等对改性后纳米ZnO的性能进行测试。结果表明:NDZ201成功对纳米ZnO进行表面改性,改性后纳米粒子的分散性得到改善,且粒子表面疏水化程度提高,亲油化度增加,紫外吸收强度增大。将NDZ201改性后纳米ZnO引入氢化蓖麻油中,制备纳米ZnO/改性氢化蓖麻油复合材料,并将该复合材料应用于皮革纤维中。纳米ZnO/改性氢化蓖麻油复合材料的乳胶粒呈球形;纳米ZnO与改性氢化蓖麻油具有抗紫外协同效应;与改性氢化蓖麻油相比,复合材料应用后皮革纤维具有更好的耐黄变性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
段力民
马建中
吕斌
鲁娟
吴雄虎
关键词 纳米ZnO氢化蓖麻油复合材料抗紫外性能耐黄变    
Abstract:In order to improve the dispersibility of ZnO nanoparticles in the organic phase, isopropyl tri(dioctyl pyrophosphate acyloxy) titanate(NDZ201) was used to modify ZnO nanoparticles. Scanning electron microscopy(SEM) was used to characterize the morphology of the nano-ZnO after modification, Fourier transform infrared spectrometer(FTIR spectrometer) was used for investigating the chemical structure of the modified nano-ZnO, and ultraviolet-visible spectrophotometer(UV-Vis) and contact angle tester(CA) were used in detecting the properties of the modified nano-ZnO. The results show that ZnO nanoparticles are modified successfully by NDZ201, the dispersibility of which is improved after modification. What's more, the hydrophobicity of the particle is improved significantly and the lipophilic degree together with UV absorption increase. Afterwards, NDZ201 modified ZnO nanoparticles are introduced into hydrogenated castor oil to prepare nano-ZnO/modified hydrogenated castor oil composites, and then the composites are applied to leather fiber. It is found that the latex particles of nano-ZnO/modified hydrogenated castor oil composites are spherical. ZnO nanoparticles and modified hydrogenated castor oil exhibit synergistic effect in UV-shielding. Moreover, the anti-yellowing property of leather sample treated with the composites is superior to that of which treated with the pure modified hydrogenated castor oil under the same test condition.
Key wordsnano ZnO    hydrogenated castor oil    composite    anti-UV property    yellowing resistance
收稿日期: 2015-03-19      出版日期: 2016-02-22
中图分类号:  TB383  
通讯作者: 马建中(1960-),男,教授,博士,主要从事高分子助剂的合成理论与作用机理以及无机有机杂化纳米材料的研究,联系地址:陕西省西安市未央大学园区陕西科技大学(710021),E-mail:majz@sust.edu.cn     E-mail: majz@sust.edu.cn
引用本文:   
段力民, 马建中, 吕斌, 鲁娟, 吴雄虎. 纳米ZnO/改性氢化蓖麻油复合材料的制备及性能[J]. 材料工程, 2016, 44(2): 63-68.
DUAN Li-min, MA Jian-zhong, LYU Bin, LU Juan, WU Xiong-hu. Preparation and Properties of Nano-ZnO/Modified Hydrogenated Castor Oil Composites. Journal of Materials Engineering, 2016, 44(2): 63-68.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.02.010      或      http://jme.biam.ac.cn/CN/Y2016/V44/I2/63
[1] THAKUR S, KARAK N. Castor oil-based hyper branched polyurethanes as advanced surface coating materials[J]. Progress in Organic Coatings, 2013, 76(1):157-164.
[2] TSOUTSOS T, CHATZAKIS M, SARANTOPOULOS I. Effect of wastewater irrigation on biodiesel quality and productivity from castor and sunflower oil seeds[J]. Renewable Energy, 2013, 57:211-215.
[3] 栾霞,王瑛瑶.氢化蓖麻油生产现状[J].粮油食品科技,2009,17(2):37-38. LUAN Xia, WANG Ying-yao. Production status of hydrogenated castor oil[J]. Foodstuffs Technology, 2009, 17(2):37-38.
[4] 黄兴山.Goulston技术公司推出具有新功能的纤维润滑剂[J].合成技术及应用,2009,24(3):57-58. HUANG Xing-shan. A new functional fiber lubricant introduced by Goulston technologies[J]. Synthesis Technology and Applications, 2009, 24(3):57-58.
[5] 张凌云,贾若琨,孙旭辉,等.NH3气氛下N掺杂ZnO的制备及光电性能[J].材料工程,2015,43(4):25-29. ZHANG Ling-yun, JIA Ruo-kun, SUN Xu-hui, et al. Preparation and photovoltaic performance of N-dope ZnO in NH3 gas[J]. Journal of Materials Engineering, 2015, 43(4):25-29.
[6] MOEZZI A, MCDONAGH A M, CORTIE M B. Zinc oxide particles:Synthesis, properties and applications[J]. Chemical Engineering Journal, 2012, 185(1):1-22.
[7] XU S, WANG Z L. One-dimensional ZnO nanostructures:Solution growth and functional properties[J]. Nano Research, 2011, 4(11):1013-1098.
[8] SHI R X, YANG P, DONG X B, et al. Growth of flower-like ZnO on ZnO nanorod arrays created on zinc substrate through low-temperature hydrothermal synthesis[J]. Applied Surface Science, 2013, 264(1):162-170.
[9] DEVI R R, MAJI T K. Effect of nano-ZnO on thermal, mechanical, UV stability, and other physical properties of wood polymer composites[J]. Industrial and Engineering Chemistry Research, 2012, 51(10):3870-3880.
[10] LIU J L, MA J Z, BAO Y, et al. Preparation of polyacrylate/ZnO nanocomposite[J]. Materials Science Forum, 2011, 694:430-434.
[11] MA J Z, LIU J L, BAO Y, et al. Morphology-photocatalytic activity-growth mechanism for ZnO nanostructures via microwave-assisted hydrothermal synthesis[J]. Crystal Research and Technology, 2013, 48(4):252-260.
[12] MA J Z, LIU J L, BAO Y, et al. Synthesis of large-scale uniform mulberry-like ZnO particles with microwave hydrothermal method and its antibacterial property[J]. Ceramics International, 2013, 39(3):2803-2810.
[13] 薄小庆,刘唱白,何越,等.多孔纳米棒氧化锌的制备及气敏特性[J].材料工程,2014,(8):86-89. BO Xiao-qing, LIU Chang-bai, HE Yue, et al. Fabrication and gas sensing properties of porous ZnO nanorods[J]. Journal of Materials Engineering, 2014,(8):86-89.
[14] 鲍艳,张永辉,马建中,等.一维纳米氧化锌的制备及应用研究进展[J].材料工程,2015,43(2):103-112. BAO Yan, ZHANG Yong-hui, MA Jian-zhong, et al. Progress in preparation and application of one-dimensional nano zinc oxide[J]. Journal of Materials Engineering, 2015, 43(2):103-112.
[15] 吕斌,马建中,高党鸽,等.改性菜籽油/有机蒙脱土纳米复合材料的制备及性能[J].高分子材料科学与工程,2013,29(9):147-151. LV Bin, MA Jian-zhong, GAO Dang-ge, et al. Preparation and properties of modified rapeseed oil/organic montmorillonite nanocomposites[J]. Polymer Materials Science and Engineering, 2013, 29(9):147-151.
[1] 王桂芳, 刘忠侠, 张国鹏. 球磨时间对热压烧结制备TiC-CoCrFeNi复合材料微观组织及力学性能的影响[J]. 材料工程, 2019, 47(6): 94-100.
[2] 尚楷, 武志红, 张路平, 王倩, 郑海康. 模板法制备MoSi2/竹炭复合材料及吸波性能[J]. 材料工程, 2019, 47(5): 122-128.
[3] 何宗倍, 张瑞谦, 付道贵, 李鸣, 陈招科, 邱邵宇. 不同界面SiC纤维束复合材料的拉伸力学行为[J]. 材料工程, 2019, 47(4): 25-31.
[4] 李亚锋, 礼嵩明, 黑艳伟, 邢丽英, 陈祥宝. 太阳辐照对芳纶纤维及其复合材料性能的影响[J]. 材料工程, 2019, 47(4): 39-46.
[5] 李曦. 二维和零维纳米材料协同增强的高性能纳米复合材料[J]. 材料工程, 2019, 47(4): 47-55.
[6] 李芹, 盛利成, 董丽敏, 张彦飞, 金立国. ZnCo2O4及ZnCo2O4/rGO复合材料的制备与电化学性能[J]. 材料工程, 2019, 47(4): 71-76.
[7] 张航, 路媛媛, 王涛, 鲁亚冉, 刘德健. 激光熔覆WC/H13-Inconel625复合材料的冲击韧性与磨损性能[J]. 材料工程, 2019, 47(4): 127-134.
[8] 李惠, 肖文龙, 张艺镡, 马朝利. 多重结构Ti-B4C/Al2024复合材料的组织和力学性能[J]. 材料工程, 2019, 47(4): 152-159.
[9] 史思涛, 陈畅, 郭政, 李国新, 伍勇华, 苏明周, 王会萌. 原料配比对多孔MgO/Fe-Cr-Ni复合材料性能的影响[J]. 材料工程, 2019, 47(4): 167-173.
[10] 赵双赞, 燕绍九, 陈翔, 洪起虎, 李秀辉, 戴圣龙. 石墨烯纳米片增强铝基复合材料的动态力学行为[J]. 材料工程, 2019, 47(3): 23-29.
[11] 杨宇凯, 张宝, 王旭东, 张虎生, 武岳, 关永军. 石墨烯及碳化硅增强铝基复合材料的冲击力学行为[J]. 材料工程, 2019, 47(3): 15-22.
[12] 贺毅强, 徐虎林, 钱晨晨, 冯立超, 乔斌, 尚峰, 李化强. 机械合金化后注射成形制备Cu/Al2O3复合材料的显微组织与力学性能[J]. 材料工程, 2019, 47(3): 154-161.
[13] 张博, 付琪智, 林森, 陈廷芳, 孙仕勇, 蒋卉. 炭化纳米Co3O4/硅藻土复合材料制备及其性能[J]. 材料工程, 2019, 47(2): 62-67.
[14] 刘英, 张永安, 王卫, 李冬生, 王俊伟, 梁玉冬. Fe对(Cu-Ni-Fe)-xNiFe2O4复合惰性阳极低温铝电解成膜机制的影响[J]. 材料工程, 2019, 47(2): 107-114.
[15] 山泉, 张亚峰, 张哲轩, 李祖来, 蒋业华, 王鹏飞. 钨含量对WCP/钢基表层复合材料压缩性能及热疲劳行为的影响[J]. 材料工程, 2019, 47(2): 115-121.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn