Please wait a minute...
 
材料工程  2016, Vol. 44 Issue (5): 101-111    DOI: 10.11868/j.issn.1001-4381.2016.05.016
  综述 本期目录 | 过刊浏览 | 高级检索 |
石墨烯基复合超级电容器材料研究进展
于美, 李新杰, 马玉骁, 刘瑞丽, 刘建华, 李松梅
北京航空航天大学 材料科学与工程学院, 北京 100191
Progress in Research on Graphene-based Composite Supercapacitor Materials
YU Mei, LI Xin-jie, MA Yu-xiao, LIU Rui-li, LIU Jian-hua, LI Song-mei
School of Materials Science and Engineering, Beihang University, Beijing 100191, China
全文: PDF(13066 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 石墨烯基复合材料因其优异的性能广泛应用于各个领域,尤其在超级电容器的研究中。本文对石墨烯基复合超级电容器材料的结构进行了分类,并分别从石墨烯-碳基复合材料、石墨烯-导电高分子复合材料、石墨烯-过渡金属化合物复合材料的角度,总结了不同石墨烯基复合超级电容器材料的研究进展,重点强调了优化电极结构和提高电极性能之间的关系。同时,概述了石墨烯基复合材料在锂离子电池、太阳能电池、催化等其他方面的应用。获得高能量密度、功率密度以及长循环寿命的超级电容器是其作为电极材料的发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
于美
李新杰
马玉骁
刘瑞丽
刘建华
李松梅
关键词 石墨烯复合超级电容器材料结构应用    
Abstract:Graphene-based composite materials have extensive potential applications in many fields due to excellent properties,especially in supercapacitor.The structures of graphene-based composite supercapacitor materials were classified, the progress in research of different graphene-based composite supercapacitor materials was reviewed from the point of graphene-carbon based composites, graphene-conductive polymers composites and graphene-transition metal compound composites,and the relationship of optimizing the electrode structure and improving the performance of electrode were focused.Meanwhile, the applications of graphene-based composite materials in the fields of lithium ion battery, solar cell, catalysis were outlined. The development tendency of graphene-based composite electrode materials is to assemble excellent supercapacitors with high energy density, power density and long cycle life.
Key wordsgraphene    composite supercapacitor material    structure    application
收稿日期: 2016-03-11      出版日期: 2016-05-19
中图分类号:  O613.71  
  TM53  
通讯作者: 于美(1981-),女,副教授,博士,主要研究方向为纳米功能材料的制备及性能研究、材料腐蚀与防护研究,联系地址:北京市海淀区学院路37号北京航空航天大学材料科学与工程学院(100191),E-mail:yumei@buaa.edu.cn     E-mail: yumei@buaa.edu.cn
引用本文:   
于美, 李新杰, 马玉骁, 刘瑞丽, 刘建华, 李松梅. 石墨烯基复合超级电容器材料研究进展[J]. 材料工程, 2016, 44(5): 101-111.
YU Mei, LI Xin-jie, MA Yu-xiao, LIU Rui-li, LIU Jian-hua, LI Song-mei. Progress in Research on Graphene-based Composite Supercapacitor Materials. Journal of Materials Engineering, 2016, 44(5): 101-111.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.05.016      或      http://jme.biam.ac.cn/CN/Y2016/V44/I5/101
[1] ZHAO M, ZHANG Q, HUANG J, et al. Towards high purity graphene/single-walled carbon nanotube hybrids with improved electrochemical capacitive performance[J]. Carbon, 2013, 54: 403-411.
[2] CAO Z Y,WEI B Q. A perspective: carbon nanotube macro-films for energy storage[J]. Energy & Environmental Science, 2013, 6(11): 3183-3201.
[3] NIU H, ZHOU D, YANG X, et al. Towards three-dimensional hierarchical ZnO nanofiber@Ni(OH)2 nanoflake core-shell heterostructures for high-performance asymmetric supercapacitors[J]. Journal of Materials Chemistry A, 2015, 3(36): 18413-18421.
[4] WANG G P, ZHANG L, ZHANG J J. A review of electrode materials for electrochemical supercapacitors[J]. Chemical Society Reviews, 2012, 41(2): 797-828.
[5] CHABI S, PENG C, HU D, et al. Ideal three-dimensional electrode structures for electrochemical energy storage[J]. Advanced Materials, 2014, 26(15): 2440-2445.
[6] NARDECCHIA S, CARRIAZO D, FERRER M L, et al. Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene: synthesis and applications[J]. Chemical Society Reviews, 2013, 42(2): 794-830.
[7] MAYOROV A S,GORBACHEV R V, MOROZOV S V, et al. Micrometer-scale ballistic transport in encapsulated graphene at room temperature[J]. Nano letters, 2011, 11(6): 2396-2399.
[8] MOSER J, BARREIRO A, BACHTOLD A. Current-induced cleaning of graphene[J]. Applied Physics Letters, 2007, 91(16): 163513.
[9] BUNCH J S, VERBRIDGE S S, ALDEN J S, et al. Impermeable atomic membranes from graphene sheets[J]. Nano Letters, 2008, 8(8): 2458-2462.
[10] BALANDIN A A. Thermal properties of graphene and nanostructured carbon materials[J]. Nature Materials, 2011, 10(8): 569-581.
[11] NAIR R R, BLAKE P, GRIGORENKO A N, et al. Fine structure constant defines visual transparency of graphene[J]. Science, 2008, 320(5881): 1308.
[12] LEE C L, WEI X D, KYSAR J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887): 382-385.
[13] EI-KADY M F, STRONG V, DUBIN S, et al.Laser scribing of high-performance and flexible graphene-based electrochemical capacitors[J]. Science, 2012, 335(6074): 1326-1330.
[14] PUMERA M. Graphene-based nanomaterials for energy storage[J]. Energy & Environmental Science, 2011, 4(3): 668-674.
[15] HUANG X, ZENG Z, FAN Z, et al. Graphene-based electrodes[J]. Advanced Materials, 2012, 24(45): 5979-6004.
[16] HUANG X, QI X Y, BOEY F, et al. Graphene-based composites[J]. Chemical Society Reviews, 2012, 41(2): 666-686.
[17] 任芳,朱光明,任鹏刚. 纳米石墨烯复合材料的制备及应用研究进展[J]. 复合材料学报, 2014, 31(2): 263-272. REN Fang, ZHU Guang-ming, REN Peng-gang. The latest advances in preparation and application of nano graphene composites[J]. Acta Materiae Compositae Sinica, 2014,31(2): 263-272.
[18] 胡忠良,陈艺锋,李娜,等. 石墨烯复合材料的结构、制备方法和原理[J]. 功能材料, 2014,45(增刊2): 16-21. HU Zhong-liang, CHEN Yi-feng, LI Na, et al. The structure, preparation method and theory of graphene composites[J]. Journal of Functional Materials, 2014,45(Suppl 2): 16-21.
[19] 任成,王小军,李永祥,等. 石墨烯复合材料的研究及其应用[J]. 现代化工, 2015,35(1): 32-35. REN Cheng, WANG Xiao-jun, LI Yong-xiang, et al. Research and application of graphene composites[J]. Modern Chemical Industry, 2015,35(1): 32-35.
[20] STOLLER M D, PARK S, ZHU Y, et al. Graphene-based ultracapacitors[J]. Nano Letters,2008, 8(10): 3498-3502.
[21] HUANG X, YIN Z Y, WU S X, et al. Graphene-based materials: synthesis, characterization, properties, and applications[J]. Small, 2011, 7(14): 1876-1902.
[22] JUNG N, KWON S, LEE D, et al. Synthesis of chemically bonded graphene/carbon nanotube composites and their application in large volumetric capacitance supercapacitors[J]. Advanced Materials, 2013, 25(47): 6854-6858.
[23] WANG W, GUO S, PENCHEV M, et al. Three dimensional few layer graphene and carbon nanotube foam architectures for high fidelity supercapacitors[J]. Nano Energy, 2013, 2(2): 294-303.
[24] YE S, FENG J, WU P. Deposition of three-dimensional graphene aerogel on nickel foam as a binder-free supercapacitor electrode[J]. ACS Applied Materials & Interfaces, 2013, 5(15): 7122-7129.
[25] PHAM D T, LEE T H, LUONG D H, et al. Carbon nanotube-bridged graphene 3D building blocks for ultrafast compact supercapacitors[J]. ACS Nano, 2015, 9(2): 2018-2027.
[26] LI Y, SUN F, LI H. Helical wrapping and insertion of graphene nanoribbon to single-walled carbon nanotube[J]. The Journal of Physical Chemistry C, 2011, 115(38): 18459-18467.
[27] ARAVIND S S J, ESWARAIAH V, RAMAPRABHU S. Facile synthesis of one dimensional graphene wrapped carbon nanotube composites by chemical vapour deposition[J]. Journal of Materials Chemistry, 2011, 21(39): 15179-15182.
[28] NAGATSU M, YOSHIDA T, MESKO M, et al. Narrow multi-walled carbon nanotubes produced by chemical vapor deposition using graphene layer encapsulated catalytic metal particles[J]. Carbon, 2006, 44(15): 3336-3341.
[29] YAN J, WEI T, SHAO B, et al. Electrochemical properties of graphene nanosheet/carbon black composites as electrodes for supercapacitors[J]. Carbon, 2010, 48(6): 1731-1737.
[30] 刘攀博,黄英. 有序介孔碳-石墨烯复合材料的制备及其对银纳米粒子吸附性能的研究[J].化学与黏合, 2013, 35(2): 18-21. LIU Pan-bo, HUANG Ying. Preparation of ordered mesoporous carbon-reduced graphene oxide composites and the research on adsorption of Ag nanoparticles[J]. Chemistry and Adhesion, 2013, 35(2): 18-21.
[31] 刘秀影,宋英,李存梅,等. 氧化石墨烯接枝碳纤维新型增强体的制备与表征[J]. 无机化学学报, 2011, 27(11): 2128-2132. LIU Xiu-ying, SONG Ying, LI Cun-mei, et al. Synthesis and characterization of carbon fibers reinforcement with grafted graphene oxide[J]. Chinese Journal of Inorganic Chemistry, 2011, 27(11): 2128-2132.
[32] DONG Q, WANG G, QIAN B, et al. Electrospun composites made of reduced graphene oxide and activated carbon nanofibers for capacitive deionization[J]. Electrochimica Acta, 2014, 137: 388-394.
[33] 易上琪,刘洪波,夏笑虹,等. 石墨烯/炭气凝胶的制备及其结构与性能研究[J]. 无机材料学报,2015,30(7): 757-762. YI Shang-qi, LIU Hong-bo, XIA Xiao-hong, et al. Preparation and electrochemical performance of graphene/carbon aerogels[J]. Journal of Inorganic Materials, 2015,30(7): 757-762.
[34] XU J, WANG K, ZU S, et al. Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage[J]. ACS Nano, 2010, 4(9): 5019-5026.
[35] HUANG Y, LIANG J J, CHEN Y S. An overview of the applications of graphene-based materials in supercapacitors[J]. Small, 2012, 8(12): 1805-1834.
[36] WANG Y F, YANG X X, LING Q, et al. Revisiting the capacitance of polyaniline by using graphene hydrogel films as a substrate: the importance of nano-architecturing[J]. Energy & Environmental Science, 2013, 6(2): 477-481.
[37] YU P P, ZHAO X, HUANG Z L, et al. Free-standing three-dimensional graphene and polyaniline nanowire arrays hybrid foams for high-performance flexible and lightweight supercapacitors[J]. Journal of Materials Chemistry A, 2014,2(35): 14413-14420.
[38] KUMAR N A, CHOI H, SHIN Y R, et al. Polyaniline-grafted reduced graphene oxide for efficient electrochemical supercapacitors[J]. ACS Nano, 2012, 6(2): 1715-1723.
[39] WU Q, XU Y, YAO Z, et al. Supercapacitors based on flexible graphene/polyaniline nanofiber composite films[J]. ACS Nano, 2010, 4(4): 1963-1970.
[40] HUANG Y F, LIN C W. Facile synthesis and morphology control of graphene oxide/polyaniline nanocomposites via in-situ polymerization process[J]. Polymer, 2012, 53(13): 2574-2582.
[41] XU Y, TAO Y, ZHENG X, et al. A metal-free supercapacitor electrode material with a record high volumetric capacitance over 800 F cm-3[J]. Advanced Materials, 2015, 27(48): 8082-8087.
[42] 韩旭,石海峰,曹利,等. 掺杂不同类型石墨烯对聚苯胺微观结构及电化学性能的影响[J]. 天津工业大学学报, 2014, 33(4): 28-34. HAN Xu, SHI Hai-feng, CAO Li, et al. Effect of doping different kinds of graphene on microstructure and electrochemical properties of polyaniline[J]. Journal of Tianjin Polytechnic University, 2014, 33(4): 28-34.
[43] AN J W, LIU J H, ZHOU Y C, et al. Polyaniline-grafted graphene hybrid with amide groups and its use in supercapacitors[J]. The Journal of Physical Chemistry C, 2012, 116(37): 19699-19708.
[44] LIU J H, AN J W, ZHOU Y C, et al. Preparation of an amide group-connected graphene-polyaniline nanofiber hybrid and its application in supercapacitors[J]. ACS Applied Materials & Interfaces, 2012, 4(6): 2870-2876.
[45] YU M, MA Y X, LIU J H, et al. Polyaniline nanocone arrays synthesized on three-dimensional graphene network by electrodeposition for supercapacitor electrodes[J]. Carbon, 2015, 87: 98-105.
[46] ZHAO Y, LIU J, HU Y, et al. Highly compression-tolerant supercapacitor based on polypyrrole-mediated graphene foam electrodes[J]. Advanced Materials, 2013, 25(4): 591-595.
[47] LIU J H, AN J W, MA Y X, et al.Synthesis of a graphene-polypyrrole nanotube composite and its application in supercapacitor electrode[J]. Journal of the Electrochemical Society, 2012, 159(6): A828-A833.
[48] 朱平,霍晓涛,韩高义,等. 基于聚吡咯/氧化石墨烯电极的MEMS微电容的性能研究[J]. 功能材料, 2013, 44(19): 2768-2772. ZHU Ping, HUO Xiao-tao, HAN Gao-yi, et al. Performance of MSMS microcapacitor based on polypyrrole/graphene oxide electrodes[J]. Journal of Functional Materials, 2013, 44(19): 2768-2772.
[49] 沈宸,陆云. 石墨烯/导电聚合物复合材料在超级电容器电极材料方面的研究进展[J]. 高分子学报, 2014,(10): 1328-1341. SHEN Chen, LU Yun. Progress in the research of graphene/ conducting polymer composites for application of supercapacitor electrode materials[J]. Acta Polymerica Sinica, 2014,(10): 1328-1341.
[50] LU X, ZHANG F, DOU H, et al. Preparation and electrochemical capacitance of hierarchical graphene/polypyrrole/carbon nanotube ternary composites[J]. Electrochimica Acta, 2012, 69: 160-166.
[51] GAO M R, XU Y F, JIANG J, et al. Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices[J]. Chemical Society Reviews, 2013, 42(7): 2986-3017.
[52] RUI X, TAN H, YAN Q. Nanostructured metal sulfides for energy storage[J]. Nanoscale, 2014, 6(17): 9889-9924.
[53] QIU W, JIAO J, XIA J, et al. A self-standing and flexible electrode of yolk-shell CoS2 spheres encapsulated with nitrogen-doped graphene for high-performance lithium-ion batteries[J]. Chemistry-A European Journal, 2015, 21(11): 4359-4367.
[54] WANG Q, JIAO L, DU H, et al. Co3S4 hollow nanospheres grown on graphene as advanced electrode materials for supercapacitors[J]. Journal of Materials Chemistry, 2012, 22(40): 21387-21391.
[55] GUO J, LI F, SUN Y, et al. Graphene-encapsulated cobalt sulfides nanocages with excellent anode performances for lithium ion batteries[J]. Electrochimica Acta, 2015, 167: 32-38.
[56] LOU X W D, ARCHER L A, YANG Z. Hollow micro-/nanostructures: synthesis and applications[J]. Advanced Materials, 2008, 20(21): 3987-4019.
[57] LI Y, SHI J. Hollow-structured mesoporous materials: chemical synthesis, functionalization and applications[J]. Advanced Materials, 2014, 26(20): 3176-3205.
[58] LAI X Y, HALPERT J E, WANG D. Recent advances in micro-/nano-structured hollow spheres for energy applications: from simple to complex systems[J]. Energy & Environmental Science, 2012, 5(2): 5604-5618.
[59] HE Y, CHEN W, LI X, et al. Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes[J]. ACS Nano, 2013, 7(1): 174-182.
[60] YU X, LU B, XU Z. Super long-life supercapacitors based on the construction of nanohoneycomb-like strongly coupled CoMoO4-3D graphene hybrid electrodes[J]. Advanced Materials, 2014, 26(7): 1044-1051.
[61] YU M, CHEN J P, MA Y X, et al. Hydrothermal synthesis of NiCo2O4 nanowires/nitrogen-doped graphene for high-performance supercapacitor[J]. Applied Surface Science, 2014, 314: 1000-1006.
[62] YU M, CHEN J P, LIU J H, et al. Mesoporous NiCo2O4 nanoneedles grown on 3D graphene-nickel foam for supercapacitor and methanol electro-oxidation[J]. Electrochimica Acta, 2015, 151: 99-108.
[63] SIMON P, GOGOTSI Y, DUNN B. Where do batteries end and supercapacitors begin[J]. Science, 2014, 343(6176): 1210-1211.
[64] OU X, GAN L, LUO Z. Graphene-templated growth of hollow Ni3S2 nanoparticles with enhanced pseudocapacitive performance[J]. Journal of Materials Chemistry A, 2014, 2(45): 19214-19220.
[65] PENG S, LI L, LI C, et al. In situ growth of NiCo2S4 nanosheets on graphene for high-performance supercapacitors[J]. Chemical Communications, 2013, 49(86): 10178.
[66] NGUYEN V H, LAMIEL C, SHIM J. Hierarchical mesoporous graphene@Ni-Co-S arrays on nickel foam for high-performance supercapacitors[J]. Electrochimica Acta, 2015, 161: 351-357.
[67] XIA X, ZHU C, LUO J, et al. Synthesis of free-standing metal sulfide nanoarrays via anion exchange reaction and their electrochemical energy storage application[J]. Small, 2014, 10(4): 766-773.
[68] AN J W, LIU J H, MA Y X, et al. Fabrication of graphene/polypyrrole nanotube/MnO2 nanotube composite and its supercapacitor application[J]. The European Physical Journal Applied Physics, 2012, 58(3): 30403.
[69] CHEN S, CHEN P, WANG Y. Carbon nanotubes grown in situ on graphene nanosheets as superior anodes for Li-ion batteries[J]. Nanoscale, 2011, 3(10): 4323-4329.
[70] SHEN L, ZHANG X, LI H, et al. Design and tailoring of a three-dimensional TiO2-graphene-carbon nanotube nanocomposite for fast lithium storage[J]. The Journal of Physical Chemistry Letters, 2011, 2(24): 3096-3101.
[71] LI S, WANG B, LI B, et al. Self-assembly of 2D sandwich-structured MnFe2O4/graphene composites for high-performance lithium storage[J]. Materials Research Bulletin, 2015, 61: 369-374.
[72] WANG B, LI S M, LIU J H, et al. An efficient route to a hierarchical CoFe2O4@graphene hybrid films with superior cycling stability and rate capability for lithium storage[J]. Electrochimica Acta, 2014, 146: 679-687.
[73] WANG B, LI S M, LI B, et al. Facile and large-scale fabrication of hierarchical ZnFe2O4/graphene hybrid films as advanced binder-free anodes for lithium-ion batteries[J]. New Journal of Chemistry, 2015, 8(3): 1725-1733.
[74] WU X Y, WANG B, LI S M, et al. Electrophoretic deposition of hierarchical Co3O4@graphene hybrid films as binder-free anodes for high-performance lithium-ion batteries[J]. RSC Advances, 2015, 5(42): 33438-33444.
[75] WANG B, LI S M, WU X Y, et al. Integration of network-like porous NiMoO4 nanoarchitectures assembled with ultrathin mesoporous nanosheets on three-dimensional graphene foam for highly reversible lithium storage[J]. Journal of Materials Chemistry A, 2015, 3(26): 13691-13698.
[76] LI B, LI S M, LIU J H, et al. Vertically aligned sulfur-graphene nanowalls on substrates for ultrafast lithium-sulfur batteries[J]. Nano Letters, 2015, 15(5): 3073-3079.
[77] LI B, YANG S B, LI S M, et al. From commercial sponge toward 3D graphene-silicon networks for superior lithium storage[J]. Advanced Energy Materials, 2015, 5(15): 1500289.
[78] LI S, LUO Y, LV W, et al. Vertically aligned carbon nanotubes grown on graphene paper as electrodes in lithium-ion batteries and dye-sensitized solar cells[J]. Advanced Energy Materials, 2011, 1(4): 486-490.
[79] NIU H H, ZHANG S W, MA Q, et al. Dye-sensitized solar cells based on flower-shaped α-Fe2O3 as a photoanode and reduced graphene oxide-polyaniline composite as a counter electrode[J]. RSC Advances, 2013, 3(38):17228-17235.
[80] SUN W W, PENG T, LIU Y M, et al. Hierarchically porous hybrids of polyaniline nanoparticles anchored on reduced graphene oxide sheets as counter electrodes for dye-sensitized solar cells[J]. Journal of Materials Chemistry A, 2013, 1(8): 2762-2768.
[81] CHATTERJEE S, LAYEK R K, NANDI A K. Changing the morphology of polyaniline from a nanotube to a flat rectangular nanopipe by polymerizing in the presence of amino-functionalized reduced graphene oxide and its resulting increase in photocurrent[J]. Carbon, 2013, 52: 509-519.
[82] KIM C H, KIM B H, YANG K S. TiO2 nanoparticles loaded on graphene/carbon composite nanofibers by electrospinning for increased photocatalysis[J]. Carbon, 2012, 50(7): 2472-2481.
[83] WU Z, YANG S, SUN Y, et al. 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction[J]. Journal of the American Chemical Society, 2012, 134(22): 9082-9085.
[84] 李松梅,王博,刘建华,等. 不同形貌镍纳米粒子-石墨烯复合材料的制备及微波吸收性能[J]. 物理化学学报, 2012, 28(11): 2754-2760. LI Song-mei, WANG Bo, LIU Jian-hua, et al. Synthesis and microwave absorption properties of nickel nanoparticles-graphene composites with different morphologies[J]. Acta Physico-Chimica Sinica, 2012,28(11):2754-2760.
[85] YU M, LIU P R, ZHANG S L, et al. Preparation of graphene-Ag composites and their application for electrochemical detection of chloride[J]. Materials Research Bulletin, 2012,47(11):3206-3210.
[1] 王晨, 燕绍九, 南文争, 陈翔. 表面活性剂对高浓度石墨烯水分散液制备的影响[J]. 材料工程, 2019, 47(7): 50-56.
[2] 马明星, 王志新, 梁存, 周家臣, 张德良, 朱达川. CeO2掺杂对AlCoCrCuFe高熵合金的组织结构与摩擦磨损性能的影响[J]. 材料工程, 2019, 47(7): 106-111.
[3] 崔超婕, 田佳瑞, 杨周飞, 金鹰, 董卓娅, 谢青, 张刚, 叶珍珍, 王瑾, 刘莎, 骞伟中. 石墨烯在锂离子电池和超级电容器中的应用展望[J]. 材料工程, 2019, 47(5): 1-9.
[4] 薛子明, 雷卫宁, 王云强, 钱海峰, 李奇林. 超临界条件下脉冲占空比对石墨烯复合镀层微观结构和性能的影响[J]. 材料工程, 2019, 47(5): 53-62.
[5] 陈林, 陈文静, 黄强, 熊中. 超声振动对EA4T钢激光熔覆质量和性能的影响[J]. 材料工程, 2019, 47(5): 79-85.
[6] 孙卫青, 程伟. 基于响应面全局优化技术的蜂窝板材料性能参数修正[J]. 材料工程, 2019, 47(5): 159-166.
[7] 王倩倩, 郑俊生, 裴冯来, 戴宁宁, 郑剑平. 质子交换膜燃料电池膜电极的结构优化[J]. 材料工程, 2019, 47(4): 1-14.
[8] 王晨, 燕绍九, 南文争, 王继贤, 彭思侃. 高浓度石墨烯水分散液的制备与表征[J]. 材料工程, 2019, 47(4): 56-63.
[9] 卢子龙, 安立宝, 刘扬. 不同浓度硼掺杂石墨烯吸附多层金原子的第一性原理研究[J]. 材料工程, 2019, 47(4): 64-70.
[10] 李芹, 盛利成, 董丽敏, 张彦飞, 金立国. ZnCo2O4及ZnCo2O4/rGO复合材料的制备与电化学性能[J]. 材料工程, 2019, 47(4): 71-76.
[11] 张航, 路媛媛, 王涛, 鲁亚冉, 刘德健. 激光熔覆WC/H13-Inconel625复合材料的冲击韧性与磨损性能[J]. 材料工程, 2019, 47(4): 127-134.
[12] 李惠, 肖文龙, 张艺镡, 马朝利. 多重结构Ti-B4C/Al2024复合材料的组织和力学性能[J]. 材料工程, 2019, 47(4): 152-159.
[13] 王继刚, 余永志, 邹婧叶, 孟江, 李淑萍, 蒋南. 基于微波辐照合成类石墨烯氮化碳的研究进展[J]. 材料工程, 2019, 47(4): 15-24.
[14] 邹婧叶, 余永志, 顾永攀, 岳夏薇, 孟江, 李淑萍, 王继刚. 高能微波辐照合成类石墨烯氮化碳纳米片的结构特征[J]. 材料工程, 2019, 47(3): 1-7.
[15] 赵双赞, 燕绍九, 陈翔, 洪起虎, 李秀辉, 戴圣龙. 石墨烯纳米片增强铝基复合材料的动态力学行为[J]. 材料工程, 2019, 47(3): 23-29.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn