Please wait a minute...
 
材料工程  2016, Vol. 44 Issue (7): 13-18    DOI: 10.11868/j.issn.1001-4381.2016.07.003
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
高能超声分散纳米晶须的数值和物理模拟
赵福泽1, 朱绍珍1,2, 冯小辉1, 杨院生1
1. 中国科学院 金属研究所, 沈阳 110016;
2. 东北大学 材料与冶金学院, 沈阳 110819
Numerical and Physical Simulations of Nano-whiskers' Dispersion Under High Intensity Ultrasonic
ZHAO Fu-ze1, ZHU Shao-zhen1,2, FENG Xiao-hui1, YANG Yuan-sheng1
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China;
2. College of Materials and Metallurgy, Northeastern University, Shenyang 110819, China
全文: PDF(24901 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 为研究高能超声处理制备纳米复合材料过程中纳米增强相在熔体中的分散过程,采用甘油为介质分别进行了数值模拟以及物理模拟。数值模拟结果表明,当超声作用于甘油中时,甘油中会形成中心-底面-壁面-中心的环形流动,变幅杆探头端面边缘附近甘油流体存在最大的流动速度,且随着超声功率的增大,流体运动速度增大。物理模拟实验结果显示,高能超声作用下甘油的实际运动行为与数值模拟结果相符合,存在环形流动;此外,高能超声作用下甘油中存在明显的空化效应;纳米晶须在超声作用下于甘油中分散良好,且随着超声功率的增大,达到充分分散所需时间变短。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵福泽
朱绍珍
冯小辉
杨院生
关键词 超声分散纳米晶须数值模拟物理模拟    
Abstract:High intensity ultrasonic processing is a good way to fabricate nano-composite. In order to study the dispersion process of nano-whiskers under high intensity ultrasonic, numerical and physical simulations of nano-whiskers' dispersion under high intensity ultrasonic were carried out by using glycerol as fluid medium. The numerical simulation results show that ultrasonic forces the fluid to flow along the center line-bottom-wall-center line route and flow velocity is the maximum near the probe tip edge. Besides, the flow velocity increases with the increase of ultrasonic power. The physical simulation results are in good agreement with the numerical simulation results. In addition, cavitation as well as convection is found in the glycerol during the ultrasonic processing; the nano-whiskers are dispersed well in the glycerol under ultrasonic, and the time for fully dispersion decreases with the increase of ultrasonic power.
Key wordsultrasonic dispersion    nano-wisker    numerical simulation    physical simulation
收稿日期: 2015-01-04      出版日期: 2016-07-19
中图分类号:  O426  
通讯作者: 杨院生(1956-),男,研究员,博士,主要从事高温合金与耐热钢、新型镁合金设计与制备、凝固技术与材料制备以及凝固与制备过程模拟计算方面研究,E-mail:ysyang@imr.ac.cn     E-mail: ysyang@imr.ac.cn
引用本文:   
赵福泽, 朱绍珍, 冯小辉, 杨院生. 高能超声分散纳米晶须的数值和物理模拟[J]. 材料工程, 2016, 44(7): 13-18.
ZHAO Fu-ze, ZHU Shao-zhen, FENG Xiao-hui, YANG Yuan-sheng. Numerical and Physical Simulations of Nano-whiskers' Dispersion Under High Intensity Ultrasonic. Journal of Materials Engineering, 2016, 44(7): 13-18.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.07.003      或      http://jme.biam.ac.cn/CN/Y2016/V44/I7/13
[1] 张荻, 张国定, 李志强. 金属基复合材料的现状与发展趋势[J]. 中国材料进展, 2010, (4):1-7. ZHANG D, ZHANG G D, LI Z Q. The current state and trend of metal matrix composites[J]. Materials China, 2010, (4):1-7.
[2] 郝斌, 段先进, 崔华, 等. 金属基复合材料的发展现状及展望[J]. 材料导报, 2005, 19(7):64-68. HAO B, DUAN X J, CUI H, et al. Present status and expectation of metal matrix composites[J]. Materials Review, 2005, 19(7):64-68.
[3] SEKHAR R, SINGH T P. Mechanisms in turning of metal matrix composites:a review[J]. Journal of Materials Research and Technology, 2014,4(2):197-207.
[4] SARAVANAN R A, SURAPPA M K. Fabrication and characterization of pure magnesium-30 vol.% SiCP particle composite[J]. Materials Science and Engineering:A, 2000, 276:108-116.
[5] THAKUR S K, SRIVATSAN T S, GUPTA M. Synthesis and mechanical behavior of carbon nanotube-magnesium composites hybridized with nanoparticles of alumina[J]. Materials Science and Engineering:A, 2007, 466(1):32-37.
[6] HABIBNEJAD-KORAYEM M, MAHMUDI R, GHASEMI H M, et al. Tribological behavior of pure Mg and AZ31 magnesium alloy strengthened by Al2O3 nano-particles[J]. Wear, 2010, 268:405-412.
[7] HASSAN S F, GUPTA M. Development of high performance magnesium nano-composites using nano-Al2O3 as reinforcement[J]. Materials Science and Engineering:A, 2005, 392:163-168.
[8] YANG Y, LAN J, LI X C. Study on bulk aluminum matrix nano-composite fabricated by ultrasonic dispersion of nano-sized SiC particles in molten aluminum alloy[J]. Materials Science and Engineering:A, 2004, 380(1):378-383.
[9] 胡志, 闫洪, 聂俏, 等. 超声法制备纳米SiC颗粒增强AZ61镁基复合材料的显微组织[J]. 中国有色金属学报, 2009,19(5):841-846. HU Z, YAN H, NIE Q, et al. Microstructure of SiC nanoparticles reinforced AZ61magnesium composites fabricated by ultrasonic method[J]. The Chinese Journal of Nonferrous Metals, 2009, (5):841-846.
[10] WANG Z H, WANG X D, ZHAO Y X, et al. SiC nanoparticles reinforced magnesium matrix composites fabricated by ultrasonic method[J]. Transactions of Nonferrous Metals Society of China, 2010, 20:1029-1032.
[11] LAN J, YANG Y, LI X C. Microstructure and microhardness of SiC nanoparticles reinforced magnesium composites fabricated by ultrasonic method[J]. Materials Science and Engineering:A, 2004, 386(1):284-290.
[12] 刘世英, 李文珍, 贾秀颖, 等. 纳米SiC颗粒增强AZ91D复合材料的制备及性能[J]. 稀有金属材料与工程, 2010,39(1):134-138. LIU S Y, LI W Z, JIA X Y, et al. Preparation and properties of nano-sized SiC particles reinforced AZ91D magnesium matrix composites[J]. Rare Metal Materials and Engineering, 2010,39(1):134-138.
[13] Glycerine Producers' Association. Physical Properties of Glycerine and Its Solutions[M]. New York:Glycerine Producers' Association, 1963. 3-24.
[14] VERSTEEG H K, MALALASEKERA W. An Introduction to Computational Fluid Dynamics:The Finite Volume Method[M]. Essex:Longman Scientific & Technical, 1995. 67-75.
[15] 杜功焕, 朱哲民, 袭秀芳. 声学基础[M]. 3版.南京:南京大学出版社, 2012. 223-230. DU G H, ZHU Z M, XI X F. Fundamentals of Acoustics[M]. 3rd ed. Nanjing:Nanjing University Press, 2012.223-230.
[16] 李太宝. 计算声学:声场的方程和计算方法[M]. 北京:科学出版社, 2005. 249-253.
[17] NOLTINGK B E, NEPPIRAS E A. Cavitation produced by ultrasonics[J]. Proceedings of the Physical Society:Section B, 1950, 63(9):674.
[18] DUBUS B, VANHILLE C, CAMPOS-POZUELO C, et al. On the physical origin of conical bubble structure under an ultrasonic horn[J]. Ultrasonics Sonochemistry, 2010, 17(5):810-818.
[1] 陈利, 焦伟, 王心淼, 刘俊岭. 三维机织复合材料力学性能研究进展[J]. 材料工程, 2020, 48(8): 62-72.
[2] 王彦菊, 姜嘉赢, 沙爱学, 李兴无. 新型高温合金材料建模及涡轮盘成形工艺模拟[J]. 材料工程, 2020, 48(7): 127-132.
[3] 赵魏, 王雅娜, 王翔. 分层界面角度对CFRP层板Ⅱ型分层的影响[J]. 材料工程, 2019, 47(9): 152-159.
[4] 郜庆伟, 赵健, 舒凤远, 吕成成, 齐宝亮, 于治水. 铝合金增材制造技术研究进展[J]. 材料工程, 2019, 47(11): 32-42.
[5] 朱怀沈, 聂义宏, 赵帅, 王宝忠. 镍基617合金动态再结晶微观组织演变与预测[J]. 材料工程, 2018, 46(6): 80-87.
[6] 刘多, 刘景和, 周英豪, 宋晓国, 牛红伟, 冯吉才. 紫铜/Al2O3陶瓷/不锈钢复合结构钎焊接头残余应力研究[J]. 材料工程, 2018, 46(3): 61-66.
[7] 尹建成, 杨环, 刘英莉, 陈业高, 张八淇, 钟毅. 约束喷射沉积过程中雾化气流场的模拟研究[J]. 材料工程, 2018, 46(11): 102-109.
[8] 梁贤烨, 弭光宝, 李培杰, 曹京霞, 黄旭. 钛合金叶片燃烧后冷却过程的三维热流耦合数值模拟[J]. 材料工程, 2018, 46(10): 37-46.
[9] 卢玉章, 熊英, 彭建强, 申健, 郑伟, 张功, 谢光. 重型燃机定向结晶空心叶片凝固过程的实验与模拟[J]. 材料工程, 2018, 46(1): 8-15.
[10] 孙颖迪, 陈秋荣. AZ31镁合金管材挤压成型数值模拟与实验研究[J]. 材料工程, 2017, 45(6): 1-7.
[11] 朱庆丰, 张扬, 朱成, 班春燕, 崔建忠. 高纯铝多向锻造大塑性变形过程的数值模拟及实验研究[J]. 材料工程, 2017, 45(4): 15-20.
[12] 张敏, 徐蔼彦, 汪强, 李露露. Al-4%Cu凝固过程枝晶生长的数值模拟[J]. 材料工程, 2016, 44(6): 9-16.
[13] 陈平, 项欣, 李俊玲, 邵天敏, 刘光磊. 沟槽型织构摩擦学性能的数值模拟与实验研究[J]. 材料工程, 2016, 44(6): 31-37.
[14] 卢玉章, 申健, 郑伟, 徐正国, 张功, 谢光. 单晶铸件凝固过程工艺优化的数值模拟[J]. 材料工程, 2016, 44(11): 1-8.
[15] 王宁, 李健, 关志军, 谭凯. 工艺参数对钼粉烧结体近等温包套锻造成形过程中应变的影响[J]. 材料工程, 2015, 43(6): 46-51.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn