Please wait a minute...
 
材料工程  2016, Vol. 44 Issue (9): 1-7    DOI: 10.11868/j.issn.1001-4381.2016.09.001
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
氧化石墨烯/铜基复合材料的微观结构及力学性能
洪起虎, 燕绍九, 杨程, 张晓艳, 戴圣龙
北京航空材料研究院 石墨烯及应用研究中心, 北京 100095
Microstructure and Mechanical Properties of Graphene Oxide/Copper Composites
HONG Qi-hu, YAN Shao-jiu, YANG Cheng, ZHANG Xiao-yan, DAI Sheng-long
Research Center of Graphene Applications, Beijing Institute of Aeronautical Materials, Beijing 100095, China
全文: PDF(19912 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用球磨和真空热压烧结方法成功制备氧化石墨烯/铜复合材料。利用OM,SEM,XRD,显微硬度计和电子万能试验机等分析球磨后的复合粉形貌,研究氧化石墨烯添加量对复合微观结构及力学性能的影响。结果表明:制备的氧化石墨烯/铜基复合材料组织致密,氧化石墨烯以片状形态较均匀地分布在铜基体中,并与铜基体形成良好的结合界面。氧化石墨烯质量分数为0.5%时,复合材料的综合力学性能较好,显微硬度和室温压缩强度分别为63HV和276MPa,相对于纯铜基体分别提高了8.6%和28%。其强化机理为剪切应力转移强化、位错强化和细晶强化。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
洪起虎
燕绍九
杨程
张晓艳
戴圣龙
关键词 氧化石墨烯/铜基复合材料真空热压烧结微观结构力学性能    
Abstract:Graphene oxide/copper (GO/Cu) composites were successfully synthesized through the ball milling and vacuum hot press sintering process. The morphologies of the mixture powders, and the microstructure and mechanical properties of GO/Cu composites were investigated by OM, SEM, XRD, hardness tester and electronic universal testing machine, respectively. The results show that the GO/Cu composites are compact. Graphene oxide with flake morphology is uniformly dispersed and well consolidated with copper matrix. When the mass fraction of graphene oxide is 0.5%, the microhardness and compress strength at RT reach up to 63HV and 276MPa, increased by 8.6% and 28%, respectively. The strengthening mechanism is load transfer effect, dislocation strengthening and fine crystal reinforcing.
Key wordsgraphene oxide/copper composite    vacuum hot press sintering    microstructure    mechanical property
收稿日期: 2016-06-15      出版日期: 2016-09-27
中图分类号:  TB383  
  TG146.1+1  
通讯作者: 燕绍九(1980-),男,博士,高级工程师,主要从事磁性材料及石墨烯应用研究工作,联系地址:北京市81信箱72分箱(100095),E-mail:shaojiuyan@126.com     E-mail: shaojiuyan@126.com
引用本文:   
洪起虎, 燕绍九, 杨程, 张晓艳, 戴圣龙. 氧化石墨烯/铜基复合材料的微观结构及力学性能[J]. 材料工程, 2016, 44(9): 1-7.
HONG Qi-hu, YAN Shao-jiu, YANG Cheng, ZHANG Xiao-yan, DAI Sheng-long. Microstructure and Mechanical Properties of Graphene Oxide/Copper Composites. Journal of Materials Engineering, 2016, 44(9): 1-7.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.09.001      或      http://jme.biam.ac.cn/CN/Y2016/V44/I9/1
[1] 岳红彦,高鑫,林轩宇,等.石墨烯增强铜基复合材料的研究现状[J].哈尔滨理工大学学报,2014,19(5):1-4.YUE H Y,GAO X,LIN X Y,et al.Progress of graphene reinforced copper matrix composite[J].Journal of Harbin University of Science and Technology,2014,19(5):1-4.
[2] BAKSHI S R,LAHIRI D,AGARWAL A.Carbon nanotube reinforced metal matrix composites:a review[J].International Materials Reviews,2010,55(1):41-64.
[3] CHEN X,XIA J,PENG J,et al.Carbon-nanotube metal-matrix composites prepared by electroless plating[J].Composites Science and Technology,2000,60(1):301-306.
[4] DAOUSHB W M,LIMA B K,MOA C B.Electrical and mechanical properties of carbon nanotube reinforced copper nanocomposites fabricated by electroless deposition process[J].Materials Science and Engineering:A,2009,60:247-253.
[5] KIM K T,CHA S I,HONG S H,et al.Microstructures and tensile behavior of carbon nanotube reinforced Cu matrix nanocomposites[J].Materials Science and Engineering:A,2006,430(1-2):27-33.
[6] CHO S C,KIKUCHI K K,MIYAZAKI T,et al.Multiwalled carbon nanotubes as a contributing reinforcement phase for the improvement of thermal conductivity in copper matrix composites[J].Scripta Materialia,2010,63(4):375-378.
[7] CHO S C,KIKUCHI K K,KAWASAKI A.On the role of amorphous intergranular and interfacial layers in the thermal conductivity of a multi-walled carbon nanotube-copper matrix composite[J].Acta Materialia,2012,60(2):726-736.
[8] RAJKUMAR K,ARAVINDAN S.Tribological studies on microwave sintered copper-carbon nanotube composites[J].Wear,2011,270(9-10):613-621.
[9] UDDIN S M,MAHMUD T,WOLF C,et al.Effect of size and shape of metal particles to improve hardness and electrical properties of carbon nanotube reinforced copper and copper alloy composites[J].Composites Science and Technology,2010,70(16):2253-2257.
[10] KIM K T,ECKERT J R,LIU G,et al.Influence of embedded-carbon nanotubes on the thermal properties of copper matrix nanocomposites processed by molecular-level mixing[J].Scripta Materialia,2011,64(2):181-184.
[11] LIN B K,MO C B,NAM D H,et al.Mechanical and electrical properties of carbon nanotube/Cu nanocomposites by molecular-level mixing and controlled oxidation process[J].Journal of Nanoscience&Nanotechnology,2010,10(10):78-84.
[12] XUE Z W,WANG L D,ZHAO P T,et al.Microstructures and tensile behavior of carbon nanotubes reinforced Cu matrix composites with molecular-level dispersion[J].Materials and Design,2012,34:298-301.
[13] DAS S,LAHIRI D,LEE D Y,et al.Measurements of the adhesion energy of graphene to metallic substrates[J].Carbon,2013,59:121-129.
[14] SIE C T.Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets[J].Materials Science and Engineering Reports,2013,74(10):281-350.
[15] NOVOSELOV K S,GEIM A K,MOROZOV S V,et al.Electric field effect in atomically thin carbon films[J].Science,2004,306(5696):666-669.
[16] KIM K S,ZHAO Y,JANG H,et al.Large-scale pattern growth of graphene films for stretchable transparent electrodes[J].Nature,2009,457(7230):706-710.
[17] PAVITHRA C L,SARADA B V,RAJULAPATI K V,et al.A new electrochemical approach for the synthesis of copper-graphene nanocomposite foils with high hardness[J].Scientific Reports,2014,4:4049-4055.
[18] LI M,CHE H,LIU X,et al.Highly enhanced mechanical properties in Cu matrix composites reinforced with graphene decorated metallic nanoparticles[J].Materials Science,2014,49(10):3725-3731.
[19] VAROL T,CANAKCI A.Microstructure,electrical conductivity and hardness of multilayer graphene/copper nanocomposites synthesized by flake powder metallurgy[J].Metals and Materials International,2015,4:704-712.
[20] 凌自成,闫翠霞,史庆南,等.石墨烯增强金属基复合材料的制备方法研究进展[J].材料导报,2015,29(4):143-149.LIN Z C,YAN C X,SHI Q N,et al.Recent progress in preparation methods for metal matrix composite materials reinforced with graphene nanosheets[J].Materials Review,2015,29(4):143-149.
[21] JEONG H K,LEE Y P,LAHAYA R J W E,et al.Evidence of graphitic AB stacking order of graphite oxides[J].Journal of the American Chemical Society,2008,130:1362-1366.
[22] BARINOV A,MALCIOGLU O B,FABRIS S,et al.Initial stages of oxidation on graphitic surface:photoemission study and density functional theory calculations[J].Journal of Physical Chemistry C,2009,113(21):9009-9013.
[23] 邓尧,黄肖容,邬晓龄.氧化石墨烯复合材料的研究进展[J].材料导报,2012,26(8):84-87.DENG Y,HUANG X R,WU X L.Review on graphene oxide composites[J].Materials Review,2012,26(8):84-87.
[24] 周静.氧化石墨烯和石墨烯的制备、表征与应用[D].南京:南京大学,2011.ZHOU J.Synthesis,characterization and application of graphene oxide and graphene[D].Nanjing:Nanjing University,2011.
[25] 李彬.石墨烯/铜复合材料制备及性能研究[D].哈尔滨:哈尔滨工业大学,2012.LI B.Preparation and properties of graphene/copper composites[D].Harbin:Harbin Institute of Technology,2012.
[26] 魏炳伟.铜-石墨烯复合材料制备和性能的研究[D].重庆:重庆理工大学,2014.WEI B W.Research on preparation and properties of copper-graphene composites[D].Chongqing:Chongqing University of Technology,2014.
[27] 燕绍九,杨程,洪起虎,等.石墨烯增强铝基复合材料的研究[J].材料工程,2014,(4):1-6.YAN S J,YANG C,HONG Q H,et al.Research of graphene-reinforced aluminum matrix nanocomposites[J].Journal of Materials Engineering,2014,(4):1-6.
[28] 李多生,吴文政,QIN Q H,等.石墨烯/Al复合材料的微观结构及力学性能[J].中国有色金属学报,2015,25(6):1498-1504.LI D S,WU W Z,QIN Q H,et al.Microstructure and mechanical properties of graphene/Al composites[J].The Chinese Journal of Nonferrous Metals,2015,25(6):1498-1504.
[29] LIU X,LI J L,YU X W,et al.Graphene nanosheet/titanium carbide composites of a fine-grained structure and improved mechanical properties[J].Ceramics International,2016,42(1):165-172.
[30] ZHANG D D,ZHAN Z J.Strengthening effect of graphene derivatives in copper matrix composites[J].Journal of Alloys and Compounds,2016,654:226-233.
[31] CHEN F Y,YING J M,WANG Y F,et al.Effects of graphene content on the microstructure and properties of copper matrix composites[J].Carbon,2016,96:836-842.
[1] 王宇, 曹零勇, 李俊鹏, 张华, 郭富安. 中间退火对汽车用5182铝合金板组织和性能的影响[J]. 材料工程, 2016, 44(9): 76-81.
[2] 徐学宏, 王小群, 闫超, 王旭. 环氧树脂及其复合材料微波固化研究进展[J]. 材料工程, 2016, 44(8): 111-120.
[3] 郗旸, 张淇萱, 李才巨, 谭军, 朱心昆, 王刚, 易健宏. Mo离子注入对纯铜表面纳米层稳定性的影响[J]. 材料工程, 2016, 44(8): 40-45.
[4] 万响亮, 李光强, 周博文, 马江华. 奥氏体不锈钢晶粒细化对形变机制和力学性能的影响[J]. 材料工程, 2016, 44(8): 29-33.
[5] 潘健, 肖长发, 赵健, 黄庆林, 任倩. 单轴取向乙烯-三氟氯乙烯共聚物纤维结晶结构与性能表征[J]. 材料工程, 2016, 44(7): 73-77.
[6] 张鉴炜, 石刚, 江大志. Buckypaper/环氧复合材料加压滤渗浸渍法制备工艺研究[J]. 材料工程, 2016, 44(7): 1-6.
[7] 刘皓, 李克智. C/C复合材料不同基体炭的微观结构[J]. 材料工程, 2016, 44(7): 7-12.
[8] 曹宇, 刘荣军, 曹英斌, 龙宪海, 严春雷, 张长瑞. 素坯密度对气相渗硅制备C/C-SiC复合材料结构与性能的影响[J]. 材料工程, 2016, 44(7): 19-25.
[9] 王丙兴, 董福志, 王昭东, 王国栋. 超快冷条件下Mn-Nb-B系低碳贝氏体高强钢组织与性能研究[J]. 材料工程, 2016, 44(7): 26-31.
[10] 秦仁耀, 孙兵兵, 肇恒跃, 郭绍庆, 唐思熠, 张学军. ZM5镁合金TIG焊接接头组织与力学性能[J]. 材料工程, 2016, 44(6): 92-97.
[11] 黄正华, 刘汪涵博, 戚文军, 徐静. 第三组元对Mg-Sn合金铸态组织与力学性能的影响[J]. 材料工程, 2016, 44(6): 56-62.
[12] 张丹丹, 战再吉. 石墨烯/金属复合材料力学性能的研究进展[J]. 材料工程, 2016, 44(5): 112-119.
[13] 吴贺君, 卢灿辉, 李庆业, 胡彪. 固相剪切碾磨制备铝粉填充聚乙烯基高性能导热复合材料的研究[J]. 材料工程, 2016, 44(4): 39-44.
[14] 张晓云, 曹东, 陆峰, 刘建华. T700/5224复合材料在湿热环境和化学介质中的老化行为[J]. 材料工程, 2016, 44(4): 82-88.
[15] 张爱军, 韩杰胜, 马文林, 孟军虎. Nb-Si超高温材料的放电等离子烧结(SPS)工艺研究[J]. 材料工程, 2016, 44(3): 1-8.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn