Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (1): 64-69    DOI: 10.11868/j.issn.1001-4381.2017.000340
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
两步法中煅烧温度对Ni0.5Zn0.5Fe2O4电磁性能的影响
李浩, 毕松, 侯根良, 苏勋家, 李军, 汤进, 林阳阳
火箭军工程大学, 西安 710025
Effect of calcination temperature on electromagnetic property of Ni0.5Zn0.5Fe2O4 prepared by two-step method
LI Hao, BI Song, HOU Gen-liang, SU Xun-jia, LI Jun, TANG Jin, LIN Yang-yang
Rocket Force University of Engineering, Xi'an 710025, China
全文: PDF(2663 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用两步法(共沉淀法联合溶胶-凝胶法)制备Ni0.5Zn0.5Fe2O4纳米吸波材料,探究了溶胶-凝胶法中前驱体的煅烧温度对样品微波吸收性能的影响。利用X射线衍射(XRD)、原子力显微镜(AFM)以及矢量网络分析(VNA)等方法对样品的微观结构和电磁性能进行表征。XRD分析结果表明:当煅烧温度大于650℃时,能够得到纯Ni0.5Zn0.5Fe2O4纳米粉体;AFM结果表明:随着煅烧温度的提高,样品颗粒粒径趋于细小化和均匀化;VNA结果表明:在2~12.4GHz范围内,煅烧温度为650℃时,制备的Ni0.5Zn0.5Fe2O4表现出最佳的电磁特性,具有优异的微波吸收性能。样品的有效吸波频宽为4.9GHz,最大吸波强度达到-24.94dB。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李浩
毕松
侯根良
苏勋家
李军
汤进
林阳阳
关键词 Ni0.5Zn0.5Fe2O4纳米吸波材料煅烧温度电磁特性微波吸收    
Abstract:The Ni0.5Zn0.5Fe2O4 nano absorbing materials were prepared by two-step method(coprecipitation method combined with sol-gel method), and the microwave absorption influence of the calcination temperature of the precursor in sol-gel method were explored. Moreover, the microstructure and electromagnetic properties of the as-prepared samples were characterized by the X-ray diffraction (XRD), atomic force microscope (AFM), vector network analysis (VNA). Consequently, XRD analysis indicates that the pure Ni0.5Zn0.5Fe2O4 nanoparticles can be obtained while the temperature is higher than 650℃. The AFM results show that the microstructure size of the samples tends to be smaller and more uniform while the temperature is increased. Besides, the VNA results indicate the Ni0.5Zn0.5Fe2O4 exhibits best electromagnetic properties within 2-12.4GHz at the calcination the temperature is 650℃, and the as-prepared samples possess excellent microwave absorption performance. The qualified absorption bandwidth reaches 4.9GHz, and the maximum reflection loss reaches -24.94dB.
Key wordsNi0.5Zn0.5Fe2O4    microwave absorbing nano-material    calcination temperature    electromagnetic property    microwave absorption
收稿日期: 2017-03-23      出版日期: 2019-01-16
中图分类号:  TQ174  
通讯作者: 苏勋家(1965-),男,教授,博士生导师,主要从事军用新材料的研究与制备等方面的研究工作,联系地址:陕西省西安市灞桥区洪庆街道同心路2号(710025),E-mail:suxunjia@163.com     E-mail: suxunjia@163.com
引用本文:   
李浩, 毕松, 侯根良, 苏勋家, 李军, 汤进, 林阳阳. 两步法中煅烧温度对Ni0.5Zn0.5Fe2O4电磁性能的影响[J]. 材料工程, 2019, 47(1): 64-69.
LI Hao, BI Song, HOU Gen-liang, SU Xun-jia, LI Jun, TANG Jin, LIN Yang-yang. Effect of calcination temperature on electromagnetic property of Ni0.5Zn0.5Fe2O4 prepared by two-step method. Journal of Materials Engineering, 2019, 47(1): 64-69.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.000340      或      http://jme.biam.ac.cn/CN/Y2019/V47/I1/64
[1] BI S, MA L, MEI B, et al. Silicon carbide/carbon nanotube heterostructures:Controllable synthesis, dielectric properties and microwave absorption[J]. Adv Powder Technol, 2014,25(4):1273-1279.
[2] LIU J, CAO M S, LUO Q, et al. Electromagnetic property and tunable microwave absorption of 3D nets from nickel chains at elevated temperature[J]. ACS Applied and Materials Interfaces, 2016,8(34):22615-22622.
[3] CAO M S, YANG J, SONG W L, et al. Ferroferric oxide/multiwalled carbon nanotube vs polyaniline/ferroferric oxide/multiwalled carbon nanotube multiheterostructures for highly effective microwave absorption[J]. ACS Applied and Materials Interfaces, 2012,4(12):6948-6955.
[4] HE J Z, WANG X X, ZHANG Y L, et al. Small magnetic nanoparticles decorating reduced graphene oxides to tune electromagnetic attenuation capacity[J]. Journal of Materials Chemistry C, 2016,4(29):7130-7140.
[5] JI K K, LI Y, CAO M S. Mn, Ti substituted barium ferrite to tune electromagnetic properties and enhanced microwave absorption[J]. Journal of Materials Science:Materials in Electronics, 2016,27(5):5128-5135.
[6] LI Y, CAO M S. Enhanced electromagnetic properties and microwave attenuation of BiFeO3-BaFe7(MnTi)2.5O19 driven by multi-relaxation and strong ferromagnetic resonance[J]. Materials and Design, 2016,110:99-104.
[7] MOAYAD H F, SAHRIM H A, MUSTAFFA H A, et al. Preparation, thermal, magnetic and microwave absorption properties of thermoplastic natural rubber matrix impregnated with NiZn ferrite nanoparticles[J]. Composites Science and Technology, 2014,96(25):103-108.
[8] KHAIRY M. Synthesis, characterization, magnetic and electrical properties of polyaniline/NiFe2O4 nanocomposite[J]. Synth Metals, 2014,189:34-41.
[9] ZHAO C Y, SHEN M Y, LI Z X, et al. Green synthesis and enhanced microwave absorption property of reduced graphene oxide-SrFe12O19 nanocomposites[J]. J Alloys Compd, 2016,689:1037-1043.
[10] ZHANG H, HONG M, CHEN P, et al. 3D and ternary rGO/MCNTs/Fe3O4 composite hydrogels:synthesis characterization and their electromagnetic wave absorption properties[J]. J Alloys Compd, 2016,665:381-387.
[11] KHADIJEH D, ELHAM Y, FARSHID N A, et al. Radar absorption properties of Ni0.5Zn0.5Fe2O4/PANI/epoxy nanocomposites[J]. J Chin Chem Soc, 2015,62(9):826-831.
[12] 景红霞,李巧玲,叶云,等. 纳米Fe3O4及Fe3O4-SrFe12O19吸波复合材料的制备及性能[J].复合材料学报, 2013,30(1):130-134. JING H X, LI Q L, YE Y, et al. The preparation and characterize of Fe3O4 and Fe3O4-SrFe12O19 macrowave absorbing composite materials[J]. Acta Materiae Compositae Sinica, 2013,30(1):130-134.
[13] GHAZZAWY E H, AMER M A. Structural, elastic and magnetic studies of the as-synthesized Co1-xSrxFe2O4 nanoparticles[J]. J Alloys Compd, 2017,690:293-303.
[14] ALBUQUERQUE A S, ARDISSON J D, MACEDO W A,et al. Nanosized powders of NiZn ferrite:synthesis, structure, and magnetism[J]. J Appl Phys, 2000,87(9):4352-4356.
[15] 毕杰,李海波,刘梅,等.纳米Co1-xZnxFe2O4/SiO2复合材料的结构和磁性[J].复合材料学报,2010,27(6):126-129. HUA J, LI H B, LIU M. Structure and magnetic properties of nano-Co1-xZnxFe2O4/SiO2 composites[J]. Acta Materiae Compositae Sinica, 2010,27(6):126-129.
[16] 孟凡君,茹淼焱,刘爱祥,等. 替代M型钡铁氧体纳米粒子的微波吸收性能[J]. 无机化学学报, 2002,18(10):1067-1670. MENG F J, RU M Y, LIU A X. The micro wave absorption properties of replace M-Ba-ferrite[J]. Joural of Inorganic Chemistry, 2002,18(10):1067-1670.
[17] LI X A, HAN X J, TAN Y J. Preparation and microwave absorption properties of Ni-B al-loy-coated Fe3O4 particles[J]. J Alloys Compd, 2008,464(1):352-356.
[18] LI Z J, HOU Z L, SONG W L, et al. Unusual continuous dual absorption peaks in Ca-doped BiFeO3 nanostructures for broadened microwave absorption[J]. Nanoscale, 2016,8(19):10415-10424.
[19] GHASEMI A, MORSAKO K. Static and high frequency magnetic properties of Mn-Co-Zr substituted Ba-ferrite[J]. J Alloys Compd, 2008,456(1):485-491.
[20] 孙银凤,李国栋,张常在,等. 稀土Z型铁氧体Ba3-xCexCo2Fe24O41的制备及其微波吸收性能[J]. 中国稀土学报, 2004,24(增刊2):152-155. SUN Y F, LI G D, ZHANG C Z,et al. Synthesis andmicrowave absorbing properties of Z-type hexaferrite Ce-doped Ba3-xCexCo2Fe24O41[J]. Journal of the Chinese Rare Earths Society, 2004,24(Suppl 2):152-155.
[21] 焦明春,李国栋. 纳米镍铜铁氧体粒子的制备与微波吸收特性研究[J]. 功能材料, 2005,36(2):295-297. JIAO M C, LI G D. Manufacturing nano-ferrite particles and research of its microwave absorption properties[J]. Journal of Functional Materials, 2005,36(2):295-297.
[22] 周克省,陈颖,秦宪明,等. Z型铁氧体Ba3(MnZn)xCo2(1-x)Fe24O41的微波吸收性能[J]. 功能材料, 2011(10):1810-1813. ZHOU K S, CHEN Y, QIN X M,et al. Microwave absorb ing properties of Z-type ferrite Ba3(MnZn)xCo2(1-x)Fe24O41[J]. Journal of Functional Materials, 2011(10):1810-1813.
[23] MU G H, SHEN H G, QIU J X. Micro wave absorption properties of composite powders with low density[J]. Applied Surface Science, 2006,253(4):2278-2281.
[24] SUN X, HE J P, LI G X, et al. Laminated magnetic graphene with enhanced electromagnetic wave absorption properties[J]. J Mater Chem C,2013,1(4):765-777.
[25] SONG W L, GUAN X T, FAN L Z, et al. Turning three-dimensional textures with graphene aerogels for ultra-light flexible graphene/texture composites of effective electromagnetic shielding[J]. Carbon, 2015,93:151-160.
[26] SONG W L, WANG J, FAN L Z, et al. Interfacial engineering of carbon nanofiber-graphene-carbon nanofiber heterojunctions in flexible lightweight electromagnetic shielding networks[J]. ACS Appl Mater Interface,2014,6(13):10516-10523.
[1] 毕松, 汤进, 王鑫, 侯根良, 李军, 刘朝辉, 苏勋家. 共沉淀过程中镍锌添加比例对两步法制备的Ni0.5Zn0.5Fe2O4吸波性能的影响[J]. 材料工程, 2019, 47(4): 91-96.
[2] 周远良, 赛义德, 张黎, 贾韦迪, 段玉平, 董星龙. 树脂基Fe纳米粒子及碳纤维复合吸波平板的制备与性能[J]. 材料工程, 2018, 46(3): 41-47.
[3] 冯永宝, 唐传明, 丘泰. Fe85Si9.6Al5.4合金的制备、表征及其低频吸波性能[J]. 材料工程, 2014, 0(2): 1-6,12.
[4] 赵海涛, 刘瑞萍, 李成吾, 马瑞廷. 聚吡咯/Ni0.5Zn0.5Fe2O4复合物的合成与表征[J]. 材料工程, 2014, 0(12): 18-22.
[5] 王大伟, 王美丽, 李中翔, 赵全亮, 崔岩. 溶胶-凝胶法制备BiFeO3粉体及其表征[J]. 材料工程, 2014, 0(12): 50-54.
[6] 贾海鹏, 苏勋家, 侯根良, 曹小平, 毕松, 刘朝辉. 石墨烯基磁性纳米复合材料的制备与微波吸收性能研究进展[J]. 材料工程, 2013, 0(5): 89-93,100.
[7] 云月厚, 刘永林, 张伟. 化学共沉淀法制备的纳米Ni0.5Zn0.5CexFe2-xO4铁氧体微波吸收特性研究[J]. 材料工程, 2008, 0(3): 58-62.
[8] 马瑞廷, 赵海涛, 赵辉, 张罡, 宋凯. Ce取代对纳米晶Ni0.5Zn0.5Fe2O4电磁性能的影响[J]. 材料工程, 2008, 0(10): 114-117.
[9] 邓橙, 宋永才. 溶胶-凝胶法制备镍纤维及其电磁性能研究[J]. 材料工程, 2006, 0(11): 40-44.
[10] 曹茂盛, 高正娟, 朱静. CNTs/Polyester复合材料的微波吸收特性研究[J]. 材料工程, 2003, 0(2): 34-36.
[11] 邢丽英, 张佐光. 结构隐身复合材料的发展与展望[J]. 材料工程, 2002, 0(4): 48-51.
[12] 王军, 宋永才, 冯春祥. 掺混型碳化硅纤维及其微波吸收特性[J]. 材料工程, 1998, 0(5): 41-43,47.
[13] 邢丽英, 刘俊能, 任淑芳. 短碳纤维电磁特性及其在吸波材料中应用研究[J]. 材料工程, 1998, 0(1): 19-21.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn