Abstract:The Ni0.5Zn0.5Fe2O4 nano absorbing materials were prepared by two-step method(coprecipitation method combined with sol-gel method), and the microwave absorption influence of the calcination temperature of the precursor in sol-gel method were explored. Moreover, the microstructure and electromagnetic properties of the as-prepared samples were characterized by the X-ray diffraction (XRD), atomic force microscope (AFM), vector network analysis (VNA). Consequently, XRD analysis indicates that the pure Ni0.5Zn0.5Fe2O4 nanoparticles can be obtained while the temperature is higher than 650℃. The AFM results show that the microstructure size of the samples tends to be smaller and more uniform while the temperature is increased. Besides, the VNA results indicate the Ni0.5Zn0.5Fe2O4 exhibits best electromagnetic properties within 2-12.4GHz at the calcination the temperature is 650℃, and the as-prepared samples possess excellent microwave absorption performance. The qualified absorption bandwidth reaches 4.9GHz, and the maximum reflection loss reaches -24.94dB.
李浩, 毕松, 侯根良, 苏勋家, 李军, 汤进, 林阳阳. 两步法中煅烧温度对Ni0.5Zn0.5Fe2O4电磁性能的影响[J]. 材料工程, 2019, 47(1): 64-69.
LI Hao, BI Song, HOU Gen-liang, SU Xun-jia, LI Jun, TANG Jin, LIN Yang-yang. Effect of calcination temperature on electromagnetic property of Ni0.5Zn0.5Fe2O4 prepared by two-step method. Journal of Materials Engineering, 2019, 47(1): 64-69.
[1] BI S, MA L, MEI B, et al. Silicon carbide/carbon nanotube heterostructures:Controllable synthesis, dielectric properties and microwave absorption[J]. Adv Powder Technol, 2014,25(4):1273-1279.
[2] LIU J, CAO M S, LUO Q, et al. Electromagnetic property and tunable microwave absorption of 3D nets from nickel chains at elevated temperature[J]. ACS Applied and Materials Interfaces, 2016,8(34):22615-22622.
[3] CAO M S, YANG J, SONG W L, et al. Ferroferric oxide/multiwalled carbon nanotube vs polyaniline/ferroferric oxide/multiwalled carbon nanotube multiheterostructures for highly effective microwave absorption[J]. ACS Applied and Materials Interfaces, 2012,4(12):6948-6955.
[4] HE J Z, WANG X X, ZHANG Y L, et al. Small magnetic nanoparticles decorating reduced graphene oxides to tune electromagnetic attenuation capacity[J]. Journal of Materials Chemistry C, 2016,4(29):7130-7140.
[5] JI K K, LI Y, CAO M S. Mn, Ti substituted barium ferrite to tune electromagnetic properties and enhanced microwave absorption[J]. Journal of Materials Science:Materials in Electronics, 2016,27(5):5128-5135.
[6] LI Y, CAO M S. Enhanced electromagnetic properties and microwave attenuation of BiFeO3-BaFe7(MnTi)2.5O19 driven by multi-relaxation and strong ferromagnetic resonance[J]. Materials and Design, 2016,110:99-104.
[7] MOAYAD H F, SAHRIM H A, MUSTAFFA H A, et al. Preparation, thermal, magnetic and microwave absorption properties of thermoplastic natural rubber matrix impregnated with NiZn ferrite nanoparticles[J]. Composites Science and Technology, 2014,96(25):103-108.
[8] KHAIRY M. Synthesis, characterization, magnetic and electrical properties of polyaniline/NiFe2O4 nanocomposite[J]. Synth Metals, 2014,189:34-41.
[9] ZHAO C Y, SHEN M Y, LI Z X, et al. Green synthesis and enhanced microwave absorption property of reduced graphene oxide-SrFe12O19 nanocomposites[J]. J Alloys Compd, 2016,689:1037-1043.
[10] ZHANG H, HONG M, CHEN P, et al. 3D and ternary rGO/MCNTs/Fe3O4 composite hydrogels:synthesis characterization and their electromagnetic wave absorption properties[J]. J Alloys Compd, 2016,665:381-387.
[11] KHADIJEH D, ELHAM Y, FARSHID N A, et al. Radar absorption properties of Ni0.5Zn0.5Fe2O4/PANI/epoxy nanocomposites[J]. J Chin Chem Soc, 2015,62(9):826-831.
[12] 景红霞,李巧玲,叶云,等. 纳米Fe3O4及Fe3O4-SrFe12O19吸波复合材料的制备及性能[J].复合材料学报, 2013,30(1):130-134. JING H X, LI Q L, YE Y, et al. The preparation and characterize of Fe3O4 and Fe3O4-SrFe12O19 macrowave absorbing composite materials[J]. Acta Materiae Compositae Sinica, 2013,30(1):130-134.
[13] GHAZZAWY E H, AMER M A. Structural, elastic and magnetic studies of the as-synthesized Co1-xSrxFe2O4 nanoparticles[J]. J Alloys Compd, 2017,690:293-303.
[14] ALBUQUERQUE A S, ARDISSON J D, MACEDO W A,et al. Nanosized powders of NiZn ferrite:synthesis, structure, and magnetism[J]. J Appl Phys, 2000,87(9):4352-4356.
[15] 毕杰,李海波,刘梅,等.纳米Co1-xZnxFe2O4/SiO2复合材料的结构和磁性[J].复合材料学报,2010,27(6):126-129. HUA J, LI H B, LIU M. Structure and magnetic properties of nano-Co1-xZnxFe2O4/SiO2 composites[J]. Acta Materiae Compositae Sinica, 2010,27(6):126-129.
[16] 孟凡君,茹淼焱,刘爱祥,等. 替代M型钡铁氧体纳米粒子的微波吸收性能[J]. 无机化学学报, 2002,18(10):1067-1670. MENG F J, RU M Y, LIU A X. The micro wave absorption properties of replace M-Ba-ferrite[J]. Joural of Inorganic Chemistry, 2002,18(10):1067-1670.
[17] LI X A, HAN X J, TAN Y J. Preparation and microwave absorption properties of Ni-B al-loy-coated Fe3O4 particles[J]. J Alloys Compd, 2008,464(1):352-356.
[18] LI Z J, HOU Z L, SONG W L, et al. Unusual continuous dual absorption peaks in Ca-doped BiFeO3 nanostructures for broadened microwave absorption[J]. Nanoscale, 2016,8(19):10415-10424.
[19] GHASEMI A, MORSAKO K. Static and high frequency magnetic properties of Mn-Co-Zr substituted Ba-ferrite[J]. J Alloys Compd, 2008,456(1):485-491.
[20] 孙银凤,李国栋,张常在,等. 稀土Z型铁氧体Ba3-xCexCo2Fe24O41的制备及其微波吸收性能[J]. 中国稀土学报, 2004,24(增刊2):152-155. SUN Y F, LI G D, ZHANG C Z,et al. Synthesis andmicrowave absorbing properties of Z-type hexaferrite Ce-doped Ba3-xCexCo2Fe24O41[J]. Journal of the Chinese Rare Earths Society, 2004,24(Suppl 2):152-155.
[21] 焦明春,李国栋. 纳米镍铜铁氧体粒子的制备与微波吸收特性研究[J]. 功能材料, 2005,36(2):295-297. JIAO M C, LI G D. Manufacturing nano-ferrite particles and research of its microwave absorption properties[J]. Journal of Functional Materials, 2005,36(2):295-297.
[22] 周克省,陈颖,秦宪明,等. Z型铁氧体Ba3(MnZn)xCo2(1-x)Fe24O41的微波吸收性能[J]. 功能材料, 2011(10):1810-1813. ZHOU K S, CHEN Y, QIN X M,et al. Microwave absorb ing properties of Z-type ferrite Ba3(MnZn)xCo2(1-x)Fe24O41[J]. Journal of Functional Materials, 2011(10):1810-1813.
[23] MU G H, SHEN H G, QIU J X. Micro wave absorption properties of composite powders with low density[J]. Applied Surface Science, 2006,253(4):2278-2281.
[24] SUN X, HE J P, LI G X, et al. Laminated magnetic graphene with enhanced electromagnetic wave absorption properties[J]. J Mater Chem C,2013,1(4):765-777.
[25] SONG W L, GUAN X T, FAN L Z, et al. Turning three-dimensional textures with graphene aerogels for ultra-light flexible graphene/texture composites of effective electromagnetic shielding[J]. Carbon, 2015,93:151-160.
[26] SONG W L, WANG J, FAN L Z, et al. Interfacial engineering of carbon nanofiber-graphene-carbon nanofiber heterojunctions in flexible lightweight electromagnetic shielding networks[J]. ACS Appl Mater Interface,2014,6(13):10516-10523.