Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (11): 63-70    DOI: 10.11868/j.issn.1001-4381.2017.001400
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
液相泡沫复合微波活化技术制备分级多孔泡沫碳及电化学性能
辛兆鹏, 方伟, 赵雷, 何漩, 陈辉, 李薇馨, 孙志敏
武汉科技大学 省部共建耐火材料与冶金国家重点实验室, 武汉 430081
Preparation of Hierarchical Porous Carbon Foam by Liquid Foam Composite Microwave Activation Technique and Electrochemical Properties
XIN Zhao-peng, FANG Wei, ZHAO Lei, HE Xuan, CHEN Hui, LI Wei-xin, SUN Zhi-min
The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science & Technology, Wuhan 430081, China
全文: PDF(4060 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 以液相泡沫为软模板、水溶性酚醛树脂为碳源、异氰酸酯作为固化剂,复合微波活化技术制备出具有分级多孔结构特征的泡沫碳,对其结构和电化学性能进行分析表征。结果表明:微波活化技术可促进泡沫液膜上H2O分子的快速逸出,于泡沫碳孔壁上形成大量纳米孔,提高比表面积,但未改变其平均孔径;活化后试样的比表面积为378.2m2/g,其在1A/g电流密度下的比电容达到123.7F/g,相比于未活化试样提升了约94%,并且由于微波活化对试样孔结构的改善而使试样的内阻减小。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
辛兆鹏
方伟
赵雷
何漩
陈辉
李薇馨
孙志敏
关键词 液相泡沫微波活化泡沫碳电化学性能    
Abstract:Hierarchical porous carbon foam, using liquid foam as soft template and water-soluble phenolic resin as carbon source and isocyanate as curing agent, was fabricated by microwave activation method. The structure and electrochemical properties of the carbon foam were characterized. The results show that the microwave activation technology can improve the rapid evolution of H2O molecules on the liquid foam film to form a large number of nanopores on the carbon foam wall to lead to the increased specific surface area,but do not change the average pore size. The specific surface area of the activated sample is 378.2m2/g and its specific capacitance at 1A/g current density is 123.7F/g, which is about 94% higher than that of the unactived sample.And the internal resistance of the sample is reduced due to the improvement of the pore structure by microwave activation.
Key wordsliquid foam    microwave activation    carbon foam    electrochemical property
收稿日期: 2017-11-15      出版日期: 2018-11-19
中图分类号:  TM911  
基金资助: 
通讯作者: 方伟(1988-),男,实验师,博士研究生,从事光电化学及电化学等方面的研究,联系地址:湖北省武汉市青山区和平大道947号武汉科技大学省部共建耐火材料与冶金国家重点实验室(430081),E-mail:fangwei@wust.edu.cn     E-mail: fangwei@wust.edu.cn
引用本文:   
辛兆鹏, 方伟, 赵雷, 何漩, 陈辉, 李薇馨, 孙志敏. 液相泡沫复合微波活化技术制备分级多孔泡沫碳及电化学性能[J]. 材料工程, 2018, 46(11): 63-70.
XIN Zhao-peng, FANG Wei, ZHAO Lei, HE Xuan, CHEN Hui, LI Wei-xin, SUN Zhi-min. Preparation of Hierarchical Porous Carbon Foam by Liquid Foam Composite Microwave Activation Technique and Electrochemical Properties. Journal of Materials Engineering, 2018, 46(11): 63-70.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.001400      或      http://jme.biam.ac.cn/CN/Y2018/V46/I11/63
[1] 李雪芹,常琳,赵慎龙,等.基于碳材料的超级电容器电极材料的研究[J].物理化学学报,2017,33(1):130-148. LI X Q,CHANG L,ZHAO S L,et al.Research on carbon-based electrode materials for supercapacitors[J].Acta Physico Chimica Sinica,2017,33(1):130-148.
[2] 邓凌峰,覃昱焜,彭辉艳,等.高温还原GO制备LiFePO4/石墨烯复合正极材料及表征[J].材料工程,2018,46(2):9-15. DENG L F,QIN Y K,PENG H Y,et al.Preparation and characterization of LiFePO4/graphene composite cathode materials by high temperature reduction GO[J].Journal of Materials Engineering,2018,46(2):9-15.
[3] SUN J,LEE HW,PASTA M,et al.A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries[J].Nature Nanotechnology,2015,10(11):980-985.
[4] CHEN Z,LIU K,LIU S,et al.Porous active carbon layer modified graphene for high-performance supercapacitor[J].Electrochimica Acta,2017,237(20):102-108.
[5] 邓凌峰,彭辉艳,覃昱焜,等.碳纳米管与石墨烯协同改性天然石墨及其电化学性能[J].材料工程,2017,45(4):121-127. DENG L F,PENG H Y,QIN Y K,et al.Combination carbon nanotubes with graphene modified natural graphite and its electrochemical performance[J].Journal of Materials Engineering, 2017,45(4):121-127.
[6] 南文争,燕绍九,彭思侃,等.磷酸铁锂/石墨烯复合材料的合成及电化学性能[J].材料工程,2018,46(4):43-50. NAN W Z,YAN S J,PENG S K,et al.Synthesis and performance of LiFePO4-C/graphene composite[J].Journal of Materials Engineering,2018,46(4):43-50.
[7] BRUN N,PEABAHARAN S,SURCIN C,et al.Design of hierarchical porous carbonaceous foams from a dual-template approach and their use as electrochemical capacitor and Li ion battery negative electrodes[J].Journal of Physical Chemistry C,2012,116(1):1408-1421.
[8] CHANG J L,GAO Z Y,WANG X R,et al.Activated porous carbon prepared from paulownia flower for high performance supercapacitor electrodes[J].Electrochimica Acta,2015,157:290-298.
[9] ZHAO Z H,HAO S M,HAO P,et al.Lignosulphonate-cellulose derived porous activated carbon for supercapacitor electrode[J].Journal of Materials Chemistry A,2015,3(29):15049-15056.
[10] ZHONG Z Y,YANG Q,LI X M,et al.Preparation of peanut hull-based activated carbon by microwave-induced phosphoric acid activation and its application in Remazol Brilliant Blue R adsorption[J].Industrial Crops & Products,2012,37(1):178-185.
[11] DOLLET B,BEN SALEM I,CANTAT I,et al.Response of a two-dimensional liquid foam to air injection:swelling rate, fingering and fracture[J].Journal of Fluid Mechanics,2013,714(1):258-282.
[12] WANG F C,ZHAO L,FANG W,et al.Preparation of organic/inorganic composite phenolic resin and application in Al2O3-C refractories[J].International Journal of Applied Ceramic Technology,2016,13(1):133-139.
[13] DU X,ZHAO L,CHEN H,et al.Synthesis and properties of multilayered films foams[J].Colloids & Surfaces A Physicochemical & Engineering Aspects,2013,436(35):599-603.
[14] HE D P,NIU J,DOU M L,et al.Nitrogen and oxygen co-doped carbon networks with a mesopore-dominant hierarchical porosity for high energy and power density supercapacitors[J].Electrochimica Acta,2017,238:310-318.
[15] 刘京,宋平,阮明波,等.氮掺杂的碳材料中石墨化氮和吡啶氮对氧还原反应的催化特性[J].催化学报,2016,37(7):1119-1126. LIU J,SONG P,RUAN M B,et al.Catalytic properties of graphitic and pyridinic nitrogen doped on carbon black for oxygen reduction reaction[J].Chinese Journal of Catalysis,2016,37(7):1119-1126.
[16] CHEN L F,LU Y,LE Y U,et al.Designed formation of hollow particle-based nitrogen-doped carbon nanofibers for high-performance supercapacitors[J].Energy & Environmental Science,2017,10:1777-1783.
[17] WANG J,SHEN L,NIE P,et al.N-doped carbon foam based three-dimensional electrode architectures and asymmetric supercapacitors[J].Journal of Materials Chemistry A,2015,3(6):2853-2860.
[18] WANG L,YU J,DONG X T,et al.Three-dimensional macroporous carbon/Fe3O4-doped porous carbon nanorods for high-performance supercapacitor[J].ACS Sustainable Chemistry & Engineering,2016,4(3):1531-1537.
[19] 耿煜,宋燕,钟明,等.酚醛基活性炭布的制备及电化学性能研究[J].材料工程,2011(10):1-4. GENG Y,SONG Y,ZHONG M,et al.Investigation of preparation and electrochemical performance of phenolic resin based activated carbon cloth[J].Journal of Materials Engineering,2011(10):1-4.
[20] 王永芳,左宋林.含磷活性炭作为双电层电容器电极材料的电化学性能[J].物理化学学报,2016,32(2):481-492. WANG Y F,ZUO S L,Electrochemical properties of phosphorus-containing activated carbon electrodes on electrical double-layer capacitors[J].Acta Physico-Chimica Sinica, 2016,32(2),481-492.
[21] 王力,张传祥,张亚飞,等.丝瓜络基活性炭电极材料的制备及其电化学性能表征[J].化工新型材料,2015(8):57-59. WANG L,ZHANG C X,ZHANG Y F,et al.Promising activated carbons derived from loofah and application in high performance supercapacitors electrodes[J]. New Chemical Materials,2015(8):57-59.
[22] LV Y,GAN L,LIU M,et al.A self-template synthesis of hierarchical porous carbon foams based on banana peel for supercapacitor electrodes[J].Journal of Power Sources,2012,209:152-157.
[23] HE S,HOU H,CHEN W.3D porous and ultralight carbon hybrid nanostructure fabricated from carbon foam covered by monolayer of nitrogen-doped carbon nanotubes for high performance supercapacitors[J].Journal of Power Sources,2015,280:678-686.
[24] CHEN Y L,DU L H,YANG P H,et al.Significantly enhanced robustness and electrochemical performance of flexible carbon nanotube-based supercapacitors by electrodepositing polypyrrole[J].Journal of Power Sources,2015,287:68-74.
[25] LU L H,LI W F,ZHOU L H,et al.Impact of size on energy storage performance of graphene based supercapacitor electrode[J].Electrochimica Acta,2016,219:463-469.
[1] 李高锋, 李智敏, 宁涛, 张茂林, 闫养希, 向黔新. 锂离子电池正极材料表面包覆改性研究进展[J]. 材料工程, 2018, 46(9): 23-30.
[2] 李诗杰, 张继刚, 李金晓, 韩奎华, 韩旭东, 路春美. 超级电容器用马尾藻基超级活性炭的制备及其电化学性能[J]. 材料工程, 2018, 46(7): 157-164.
[3] 南文争, 燕绍九, 彭思侃, 张晓艳, 刘大博, 戴圣龙. 磷酸铁锂/石墨烯复合材料的合成及电化学性能[J]. 材料工程, 2018, 46(4): 43-50.
[4] 巩桂芬, 王磊, 兰健. EVOH-SO3Li/PET电纺锂离子电池隔膜电化学性能[J]. 材料工程, 2018, 46(3): 7-12.
[5] 邓凌峰, 覃昱焜, 彭辉艳, 连晓辉, 吴义强. 高温还原GO制备LiFePO4/石墨烯复合正极材料及表征[J]. 材料工程, 2018, 46(2): 9-15.
[6] 李可峰, 尹晓燕. 聚苯醚纳米纤维锂电隔膜的制备[J]. 材料工程, 2018, 46(10): 120-126.
[7] 袁琦, 邹正光, 万振东, 韩世昌. 锂离子电池正极材料铁掺杂V6O13的制备及电化学性能[J]. 材料工程, 2018, 46(1): 106-113.
[8] 许健, 竺培显, 韩朝辉, 曹勇, 周生刚. 表面处理对碳纤维基β-PbO2电极性能的影响[J]. 材料工程, 2018, 46(1): 125-132.
[9] 马昊, 刘磊, 苏杰, 路雪森. 锂离子电池Sn基负极材料研究进展[J]. 材料工程, 2017, 45(6): 138-146.
[10] 邓凌峰, 彭辉艳, 覃昱焜, 吴义强. 碳纳米管与石墨烯协同改性天然石墨及其电化学性能[J]. 材料工程, 2017, 45(4): 121-127.
[11] 张红涛, 尚华, 顾波, 张恒源. 沸石基锂离子电池隔膜的制备及性能[J]. 材料工程, 2017, 45(12): 83-87.
[12] 张国芳, 张羊换, 许剑轶, 侯忠辉. Ni-5% RExOy复合添加剂对Mg2Ni电化学储氢性能的影响[J]. 材料工程, 2017, 45(11): 72-77.
[13] 李月英, 郭伟华, 郝洪顺, 苏青, 王辉利, 秦磊, 高文元, 刘贵山. TiO2/SrTiO3核壳结构光阳极制备及其光电化学性能[J]. 材料工程, 2016, 44(3): 60-65.
[14] 蒋明, 李子全, 刘劲松, 彭洁, 谢理明. Mo对A2B7型La-Mg-Ni贮氢电极合金相结构及电化学性能的影响[J]. 材料工程, 2014, 0(9): 100-105.
[15] 王瑞芬, 张胤, 许剑轶, 张羊换. 化学镀铜对贮氢合金La0.75Mg0.25Ni3.2Co0.2Al0.1电极性能的影响[J]. 材料工程, 2013, 0(5): 44-47,52.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn