Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (1): 84-91    DOI: 10.11868/j.issn.1001-4381.2018.000086
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
Sc元素对ZL205A合金组织和力学性能的影响
刘闪光1, 李国爱1, 罗传彪1, 李海超2, 陆政1, 戴圣龙1
1. 中国航发北京航空材料研究院, 北京 100095;
2. 哈尔滨工业大学材料科学与工程学院, 哈尔滨 150001
Effect of Sc on microstructure and mechanical properties of ZL205A alloy
LIU Shan-guang1, LI Guo-ai1, LUO Chuan-biao1, LI Hai-chao2, LU Zheng1, DAI Sheng-long1
1. AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China;
2. School of Materials Science and Engineering, Harbing Institute of Technology, Harbin 150001, China
全文: PDF(9028 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 利用金相显微镜、扫描电镜、透射电镜等手段,研究Sc含量对砂型铸造ZL205A合金的组织和力学性能的影响规律。结果表明,Sc含量低于0.12%(质量分数,下同),未发现晶粒细化效果;Sc含量为0.06%,热处理态的合金晶界出现残留颗粒状W(AlCuSc)相,随Sc含量增加,W相由颗粒状转变为连续条带状;ZL205A合金热处理后弥散析出少量Al3(Zrx,Ti1-x)相,添加Sc后弥散相转变为Al3(Zrx,Tiy,Sc1-x-y)相,弥散相的数量随Sc含量的增加而增加;由于弥散相数量的增加,Sc含量为0.06%时,合金的时效响应速率和硬度峰值均略有增加,合金的屈服强度提高了4%;Sc含量为0.12%时,晶界残留相增加,Cu在α(Al)中的浓度降低,θ'相密度明显降低,合金的时效响应速率、硬度峰值以及力学性能各项指标均大幅下降;ZL205A合金中添加0.06%的Sc,即可明显地抑制θ'相的长大。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘闪光
李国爱
罗传彪
李海超
陆政
戴圣龙
关键词 ZL205ASc合金化时效行为弥散强化沉淀强化    
Abstract:The microstructure and ageing precipitation behavior of ZL205A alloy with different addition of Sc were investigated by OM, SEM and TEM. The results show that the grain refinement effect of Sc (up to 0.12%, mass fraction, the same below) is not observed in ZL205A alloy; the residual particle W (AlCuSc) phase is formed after heat treatment when the Sc content is 0.06%, and transformed to strip-liked structure with the increase of Sc content in the grain interface; the dispersed phases Al3 (Zrx, Ti1-x) in ZL205A alloy are transformed to Al3 (Zrx, Tiy, Sc1-x-y), and the number of the dispersed phases increase with the increase of Sc content; when the Sc content is 0.06%, the ageing response, peak hardness increase slightly, and the yield strength increases by 4%; while the Sc content increases to 0.12%, the decrease of the solute concentration may reduce the number of the θ' phase due to the strip-liked W phase formed in the grain interface, which results in the dramatic decrease of the ageing response, peak hardness and mechanical properties; traces of Sc help to slow down the growth of θ' phase during the over-aged stage.
Key wordsZL205A    Sc alloying    ageing behavior    dispersion strengthening    precipitation strengthening
收稿日期: 2018-01-22      出版日期: 2020-01-09
中图分类号:  TG292  
基金资助: 
通讯作者: 陆政(1966-),男,研究员,硕士,主要从事铝合金研究,联系地址:北京市81信箱2分箱(100095),E-mail:luzheng621@126.com     E-mail: luzheng621@126.com
引用本文:   
刘闪光, 李国爱, 罗传彪, 李海超, 陆政, 戴圣龙. Sc元素对ZL205A合金组织和力学性能的影响[J]. 材料工程, 2020, 48(1): 84-91.
LIU Shan-guang, LI Guo-ai, LUO Chuan-biao, LI Hai-chao, LU Zheng, DAI Sheng-long. Effect of Sc on microstructure and mechanical properties of ZL205A alloy. Journal of Materials Engineering, 2020, 48(1): 84-91.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000086      或      http://jme.biam.ac.cn/CN/Y2020/V48/I1/84
[1] 杨光昱,介万奇,张润强,等.ZL205A铝合金近液相线等温半固态组织转变特性[J].稀有金属材料与工程,2007,36(10):1717-1721. YANG G Y,JIE W Q,ZHANG R Q,et al.Behavior of microstructure evolution of ZL205A cast aluminum alloy during semi-solid isothermal annealing process[J].Rare Metal Materials and Engineering,2007,36(10):1717-1721.
[2] 于桂林,赵昕.高强度Al-Cu系合金大尺寸封闭环形铸件铸造工艺[J].材料工程,2000(9):42-43. YU G L, ZHAO X.The casting process of large closed annular castings made of high strength Al-Cu alloy[J].Journal of Materials Engineering,2000(9):42-43.
[3] 李敏,王宏伟,朱兆军,等.添加重熔料及稀土钇对ZL205A合金铸态组织、热裂性能及凝固特性的影响[J].稀有金属材料与工程,2010, 39(增刊1):5-10. LI M,WANG H W,ZHU Z J,et al.Effects of scraps and yttrium on the as-casting microstructure, hot tearing and solidification characteristics of ZL205A alloy[J].Rare Metal Materials and Engineering,2010,39(Suppl 1):5-10.
[4] YAO D M,ZHAO W G,ZHAO H L,et al.High creep resistance behavior of the casting Al-Cu alloy modified by La[J].Scripta Materialia,2009,61(12):1153-1155.
[5] LAMIKHOV L K,SAMSONOV G V.Modification of aluminum by transition metals[J].Soviet Physics Doklady,1964,9(2):1-8.
[6] ELAGIN V I,ZAKHAROV V V,ROSTOVA T D.Some features of decomposition for the solid solution of scandium in aluminum[J].Metal Science and Heat Treatment,1983,25(7):546-549.
[7] TORMA T,KOVÁCS-CSETÉNYI E, TURMEZEY T, et al.Hardening mechanisms in Al-Sc alloys[J].Journal of Materials Science,1989,24(11):3924-3927.
[8] DRITS M E,BYKOV Y G,TOROPOVA L S.Effect of ScAl3 phase dispersity on hardening of Al-6.3%Mg-0.21%Sc alloy[J].Metal Science and Heat Treatment,1985,27(4):309-312.
[9] NORMAN A F,HYDE K,COSTELLO F, et al.Examination of the effect of Sc on 2000 and 7000 series aluminium alloy castings:for improvements in fusion welding[J].Materials Science and Engineering:A,2003,354(1/2):188-198.
[10] EMADI D,RAO A K P,MAHFOUD M.Influence of scandium on the microstructure and mechanical properties of A319 alloy[J].Materials Science and Engineering:A,2010,527(23):6123-6132.
[11] NORMAN A F,PRANGNELL P B, McEWEN R S. The solidafication behavior of dilute aluminium-scandium alloys[J].Acta Materials, 1998, 46(16):5715-5732.
[12] CHEN Y C,FINE M E,WEERTMAN J R,et al.Coarsening behavior of Ll2 structured Al3(Zrx V1-x) precipitates in rapidly solidified Al-Zr-V alloy[J].Scripta Metallurgica,1987,21(7):1003-1008.
[13] RYSET J,RYUM N. Scandium in aluminum alloys[J].International Materials Reviews,2005,50(1):19-44.
[14] NOBLE B.Theta-prime precipitation in aluminium-copper-cadmium alloys[J].Acta Materialia,1968,16(3):393-401.
[15] NUYTEN J B M.Quenched structures and precipitation in Al-Cu alloys with and without traceadditions of Cd[J].Acta Metallurgica,1967,15(11):1765-1770.
[16] CHEN B A,PAN L,WANG R H,et al.Effect of solution treatment on precipitation behaviors and age hardening response of Al-Cu alloys with Sc addition[J].Materials Science and Engineering:A,2011,530(15):607-617.
[17] KEITH E K,DUNAND C D,DAVID N S.Atom probe tomographic studies of precipitation in Al-0.1Zr-0.1Ti (at.%) alloys[J].Microscopy and Microanalysis,2007,13(6):503-516.
[18] TSUNEKAWA S,FINE M E.Lattice parameters of Al3(Zrx,Ti1-x) vs. x in Al-2at.% (Ti+Zr) alloys[J].Scripta Metallurgica,1982,16(4):391-392.
[19] KNIPLING K E,KARNESKY R A,LEE C P,et al.Precipitation evolution in Al-0.1Sc, Al-0.1Zr and Al-0.1Sc-0.1Zr (at.%) alloys during isochronal aging[J].Acta Materialia,2010,58(15):5184-5195.
[20] LIFSHITZ I M,SLYOZOV V V.The kinetics of precipitation from supersaturated solid solutions[J].Journal of Physics and Chemistry of Solids,1961,19(1/2):35-50.
[21] IWAMURA S,MIURA Y.Loss in coherency and coarsening behavior of AlSc precipitates[J]. Acta Materialia,2004,52(3):591-600.
[1] 贺建超, 高进, 邓东, 万发荣. 辐照过程中He对ODS合金中氧化物的影响[J]. 材料工程, 2016, 44(4): 89-93.
[2] 李晓林, 蔡庆伍, 余伟, 张恒磊. N含量对Cr-Mo-V系超低碳贝氏体钢组织性能和析出行为的影响[J]. 材料工程, 2013, 0(3): 16-21,26.
[3] 廖璐, 周张健, 李明. 14CrODS铁素体钢的制备及其拉伸性能[J]. 材料工程, 2012, 0(4): 42-46.
[4] 陈邦峰, 贾泮江. ZL205A铝合金铸件偏析缺陷的断口形貌和化学成分[J]. 材料工程, 2010, 0(9): 1-6,24.
[5] 程建奕, 敖学文, 余方新, 谭敦强. Cu-Al合金内氧化工艺参数对性能影响的研究[J]. 材料工程, 2010, 0(7): 29-33.
[6] 章林, 曲选辉, 何新波, 段柏华, 秦明礼. ODS镍基超合金的研究进展[J]. 材料工程, 2010, 0(6): 90-96.
[7] 贾泮江, 陈邦峰. ZL205A合金高强优质铸件在大飞机上的应用[J]. 材料工程, 2009, 0(1): 77-80.
[8] 贾泮江, 陈邦峰. 显微共晶偏析对ZL205A合金力学性能的影响[J]. 材料工程, 2008, 0(2): 1-4.
[9] 方建筠, 秦颢, 栗卓新, 蒋建敏, 史耀武. 高硬度耐磨损电弧喷涂涂层研究[J]. 材料工程, 2008, 0(2): 27-30.
[10] 杨峥, 田耘, 柳光祖. MGH956合金冷轧薄板的高温再结晶行为研究[J]. 材料工程, 2007, 0(11): 11-14.
[11] 谷亦杰, 周铁涛, 张蕾, 张永刚, 陈昌麒. 自然时效对Al-Li-Cu-Mg-Zr合金的影响[J]. 材料工程, 2001, 0(1): 10-11,18.
[12] 于桂林, 赵昕. 高强度Al-Cu系合金大尺寸封闭环形铸件铸造工艺[J]. 材料工程, 2000, 0(9): 42-43.
[13] 彭良明, 朱世杰, 陈浩然, 王富岗. Al-8.5Fe-1.3V-1.7Si合金的压缩蠕变行为[J]. 材料工程, 1998, 0(4): 25-27.
[14] 韩光炜, 冯涤, 叶武俊. 再结晶Mi3Al基合金中弥散无序γ相的强化作用[J]. 材料工程, 1995, 0(7): 16-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn