Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (11): 13-24    DOI: 10.11868/j.issn.1001-4381.2018.000097
  综述 本期目录 | 过刊浏览 | 高级检索 |
基于聚二甲基硅氧烷柔性可穿戴传感器研究进展
金欣1, 畅旭东1, 王闻宇1, 朱正涛1,2, 林童1,3
1. 天津工业大学 省部共建分离膜与膜过程国家重点实验室, 天津 300387;
2. 迪肯大学 前沿纤维研究与创新中心, 澳大利亚 吉朗 VIC3217;
3. 南达科他矿业理工学院, 美国 拉皮德城 SD57701
Research Progress in Flexible Wearable Strain Sensors Based on Polydimethylsiloxane
JIN Xin1, CHANG Xu-dong1, WANG Wen-yu1, ZHU Zheng-tao1,2, LIN Tong1,3
1. State of Laboratory of Separation Membranes and Membrane Process, Tianjin Polytechnic University, Tianjin 300387, China;
2. Future Fibres Research and Innovation Center, Deakin University, Geelong VIC3217, Australian;
3. Department of Chemistry and Applied Biological Science, South Dakota School of Mines and Technology, Rapid City SD57701, America
全文: PDF(9977 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 传统的电子应变传感器大多基于金属和半导体材料,其柔韧性和可穿戴特性较差。随着柔性电子材料的发展,可穿戴式柔性应变传感器呈现出巨大的市场前景。由于其具有生物相容性好同时兼具可穿戴性、高弹性和可拉伸性等特点逐渐成为研究热点。本文对近些年基于聚二甲基硅氧烷(PDMS)的压阻式和电容式柔性传感器的先进制备技术、性能及应用方面的研究进展进行了综述。最后对可穿戴式柔性传感器所面临的挑战做了简单讨论,并对其未来的发展方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
金欣
畅旭东
王闻宇
朱正涛
林童
关键词 聚二甲基硅氧烷柔性应变传感器可穿戴    
Abstract:Traditional electronic strain sensors based on metal and semiconductor materials have poor flexibility and wear-ability, which are not applicable for stretchable sensors. With the development of flexible electronic materials, wearable electronic devices show great market prospects. Flexible strain sensors have many unique advantages, such as good biocompatibility, wearable, stretchability and elasticity, which become a hotspot of research. The research progress is the preparation technology, performance and application of PDMS based piezoresistive and capacitive flexible strain sensors were summarized in this paper. Finally, challenges, important directions and perspectives related to PDMS flexible strain sensors were prospected.
Key wordspolydimethylsiloxane (PDMS)    flexible strain sensor    wearable
收稿日期: 2018-01-24      出版日期: 2018-11-19
中图分类号:  TB34  
基金资助: 
通讯作者: 金欣(1972-),女,副教授,主要从事新型功能纤维材料的研究,联系地址:天津市西青区宾水西道399号天津工业大学材料科学与工程学院(300387),E-mail:jinxin29@126.com     E-mail: jinxin29@126.com
引用本文:   
金欣, 畅旭东, 王闻宇, 朱正涛, 林童. 基于聚二甲基硅氧烷柔性可穿戴传感器研究进展[J]. 材料工程, 2018, 46(11): 13-24.
JIN Xin, CHANG Xu-dong, WANG Wen-yu, ZHU Zheng-tao, LIN Tong. Research Progress in Flexible Wearable Strain Sensors Based on Polydimethylsiloxane. Journal of Materials Engineering, 2018, 46(11): 13-24.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000097      或      http://jme.biam.ac.cn/CN/Y2018/V46/I11/13
[1] AMJADI M, KYUNG K, PARK I, et al. Stretchable, skin-mountable, and wearable strain sensors and their potential applications:a review[J]. Advanced Functional Materials, 2016, 26(11):1678-1698.
[2] TRUNG T Q, LEE N. Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoringand personal healthcare[J]. Advanced Materials, 2016, 28(22):4338-4372.
[3] ZANG Y, ZHANG F, DI C A, et al. Advances of flexible pressure sensors toward artificial intelligence and health care applications[J]. Materials Horizons, 2015, 2(2):25-59.
[4] KURIBARA K, WANG H, UCHIYAMA N, et al. Organic transistors with high thermal stability for medical applications[J]. Nature Communications, 2012, 3(2):723.
[5] YOKOTA R, YAMAMOTO S, YANO S, et al. Molecular design of heat resistant polyimides having excellent processability and high glass transition temperature[J]. High Performance Polymers, 2001, 13(2):61-72.
[6] KALTENBRUNNER M, SEKITANI T, REEDER J, et al. An ultra-lightweight design for imperceptible plastic electronics[J]. Nature, 2013, 499(7459):458-463.
[7] LI C H, WANG C, KEPLINGER C, et al. A highly stretchable autonomous self-healing elastomer[J]. Nature Chemistry, 2016, 8(6):618-624.
[8] JEONG S H, ZHANG S, HJORT K, et al. Stretchable electronic devices:PDMS-based elastomer tuned soft, stretchable, and sticky for epidermal electronics[J]. Advanced Materials, 2016, 28(28):5730-5736.
[9] WAGNER S, BAUER S. Materials for stretchable electronics[J]. Mrs Bulletin, 2012, 37(37):207-217.
[10] WANG X, GU Y, XIONG Z, et al. Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals[J]. Advanced Materials, 2014, 26(9):1336-1342.
[11] JEONG Y R, PARK H, JIN S W, et al. Highly stretchable and sensitive strain sensors using fragmentized graphene foam[J]. Advanced Functional Materials, 2015, 25(27):4228-4236.
[12] JIAN M, XIA K, WANG Q, et al. Flexible and highly sensitive pressure sensors based on bionic hierarchical structures[J]. Advanced Functional Materials, 2017,27:1606066.
[13] LI Y Q, HUANG P, ZHU W B, et al. Flexible wire-shaped strain sensor from cotton thread for human health and motion detection[J]. Scientific Reports, 2017,7:45013.
[14] YAO H B, GE J, WANG C F, et al. A flexible and highly pressure-sensitive graphene-polyurethane sponge based on fractured microstructure design[J]. Advanced Materials, 2013, 25(46):6692-6698.
[15] LIAO X, LIAO Q, YAN X, et al. Flexible and highly sensitive strain sensors fabricated by pencil drawn for wearable monitor[J]. Advanced Functional Materials, 2015, 25(16):2395-2401.
[16] PARK J, LEE Y, HONG J, et al. Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins[J]. ACS Nano, 2014, 8(5):4689-4697.
[17] KONG J H, JANG N S, KIM S H, et al. Simple and rapid micropatterning of conductive carbon composites and its application to elastic strain sensors[J]. Carbon, 2014, 77(10):199-207.
[18] WU S, ZHANG J, LADANI R B, et al. Novel electrically-conductive porous pdms/carbon nanofibre composites for deformable strain-sensors and conductors[J]. ACS Applied Materials & Interfaces,2017, 9(16):14207-14215.
[19] JIANG J, BAO B, LI M, et al. Fabrication of transparent multilayer circuits by inkjet printing[J]. Advanced Materials, 2016, 28(7):1420-1426.
[20] AMJADI M, PICHITPAJONGKIT A, LEE S, et al. Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite[J]. ACS Nano, 2014, 8(5):5154-5163.
[21] GONG S, SCHWALB W, WANG Y, et al. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires[J]. Nature Communications, 2014, 5(2):3132.
[22] SU M, LI F, CHEN S, et al. Nanoparticle based curve arrays for multirecognition flexible electronics[J]. Advanced Materials, 2016, 28(7):1369-1374.
[23] PANG C, LEE G Y, KIM T I, et al. A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres[J]. Nature Materials, 2012, 11(9):795-801.
[24] BODAS D, KHANMALEK C. Hydrophilization and hydrophobic recovery of pdms by oxygen plasma and chemical treatment-An SEM investigation[J]. Sensors & Actuators B Chemical, 2007, 123(1):368-373.
[25] CHOONG C L, SHIM M B, LEE B S, et al. Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array[J]. Advanced Materials, 2014, 26(21):3451-3458.
[26] CAI L, LI J, LUAN P, et al. Highly transparent and conductive stretchable conductors based on hierarchical reticulate single-walled carbon nanotube architecture[J]. Advanced Functional Materials, 2015, 22(24):5238-5244.
[27] LEE B Y, KIM J, KIM H, et al. Low-cost flexible pressure sensor based on dielectric elastomer film with micro-pores[J]. Sensors & Actuators A:Physical, 2016, 240:103-109.
[28] TEE B CK, ALEX C, DUNN R R, et al. Tunable flexible pressure sensors using microstructured elastomer geometries for intuitive electronics[J]. Advanced Functional Materials, 2015, 24(34):5427-5434.
[29] VIRY L, LEVI A, TOTARO M, et al. Flexible three-axial force sensor for soft and highly sensitive artificial touch[J]. Advanced Materials, 2014, 26(17):2659-2664.
[30] ZHU B, NIU Z, WANG H, et al. Microstructured graphene arrays for highly sensitive flexible tactile sensors[J]. Small, 2014, 10(18):3625-3631.
[31] MANNSFELD S C B, TEE C K, STOLTENBERG R M, et al. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers[J]. Nature Materials, 2010, 9(10):859-864.
[32] FAN F R, LIN L, ZHU G, et al. Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films[J]. Nano Letters, 2012, 12(6):3109-3014.
[33] SU B, GONG S, MA Z, et al. Mimosa-inspired design of a flexible pressure sensor with touch sensitivity[J]. Small, 2015, 11(16):1886-1891.
[34] YANG Y, ZHANG H, LIN Z H, et al. Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system[J]. ACS Nano, 2013, 7(10):9213-9222.
[35] LIPOMI D J, VOSGUERITCHIAN M, TEE B C, et al. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes[J]. Nature Nanotechnology, 2011, 6(12):788-792.
[36] WANG X, LI T, ADAMS J, et al. Transparent stretchable carbon-nanotube-inlaid conductors enabled by standard replication technology for capacitive pressure strain and touch sensors[J]. Journal of Materials Chemistry A, 2013, 1(11):3580-3586.
[37] KWON D, LEE T I, SHIM J, et al. Highly sensitive, flexible and wearable pressure sensor based on a giant piezocapacitive effect of three-dimensional microporous elastomeric dielectric layer[J].ACS Applied Materials & Interfaces, 2016, 8(26):16922-16931.
[38] HAMMOCK M L, CHORTOS A, TEE B C, et al. 25th anniversary article:the evolution of electronic skin (e-skin):a brief history, design considerations and recent progress[J]. Advanced Materials, 2013,25(42):5997-6038.
[39] YAO S, ZHU Y. Wearable multifunctional sensors using printed stretchable conductors made of silvernanowires[J]. Nanoscale, 2014, 6(4):2345-2352.
[40] CAI L, SONG L, LUAN P, et al. Super-stretchable transparent carbon nanotube-based capacitive strain sensors for human motion detection[J]. Scientific Reports, 2013, 3(6157):3048.
[41] QUAN Y, WEI X, XIAO L, et al. Highly sensitive and stable flexible pressure sensors with micro-structured electrodes[J]. Journal of Alloys & Compounds, 2017,699:824-831.
[42] ZHENG Y, LI Y, LI Z, et al. The effect of filler dimensionality on the electromechanical performance of polydimethylsiloxane based conductive nanocomposites for flexible strain sensors[J]. Composites Science & Technology, 2017, 139:64-73.
[43] LIN T Y, HA D, VRIES W N D, et al. Ultra-thin tag fabrication and sensing technique using third harmonic for implantable wireless sensors[C]//Microwave Symposium. USA:IEEE, 2011:1-4.
[44] LEE J, KWON H, SEO J, et al. Conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics[J]. Advanced Materials, 2015, 27(15):2433-2439.
[45] SCHWARTZ G, TEE B C, MEI J, et al. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring[J]. Nature Communications, 2013, 4(5):1859.
[46] KANG S, LEE J, LEE S, et al. Highly sensitive pressure sensor based on bioinspired porous structure for real-time tactile sensing[J]. Advanced Electronic Materials, 2016, 2(12):1600356.
[47] PARK S, KIM H, VOSGUERITCHIAN M, et al. Stretchable snergy-harvesting tactile electronic skin capable of differentiating multiple mechanical stimuli modes[J]. Advanced Materials, 2014, 26(43):7324-7332.
[48] PANG C, KOO J H, NGUYEN A, et al. Highly skin-conformal microhairy sensor for pulse signal amplification[J]. Advanced Materials, 2015, 27(4):634-640.
[49] YAMADA T, HAYAMIZU Y, YAMAMOTO Y, et al. A stretchable carbon nanotube strain sensor for human-motion detection[J]. Nature Nanotechnology, 2011, 6(5):296-301.
[50] ROH E, HWANG B U, KIM D, et al. Stretchable, transparent, ultra-sensitive and patchable strain sensor for human-machine interfaces comprising a nanohybrid of carbon nanotubes and conductive elastomers[J]. ACS Nano, 2015, 9(6):6252-6261.
[1] 王一博, 赵九蓬. 3D打印柔性可穿戴锂离子电池[J]. 材料工程, 2018, 46(3): 13-21.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn