Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (11): 163-170    DOI: 10.11868/j.issn.1001-4381.2018.000326
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
5A90铝锂合金超塑性变形机理的定量研究
叶凌英1,2,3, 杨栋1,2,3, 李红萍1, 张新明1,2,3, 廖荣跃1,2,3
1. 中南大学 材料科学与工程学院, 长沙 410083;
2. 中南大学 有色金属材料科学与工程教育部重点实验室, 长沙 410083;
3. 中南大学有色金属先进结构材料与制造协同创新中心, 长沙 410083
Quantitative study of superplastic deformation mechanism of 5A90 Al-Li alloy
YE Ling-ying1,2,3, YANG Dong1,2,3, LI Hong-ping1, ZHANG Xin-ming1,2,3, LIAO Rong-yue1,2,3
1. School of Materials Science and Engineering, Central South University, Changsha 410083, China;
2. Key Laboratory of Nonferrous Metal Materials Science and Engineering(Ministry of Education), Central South University, Changsha 410083, China;
3. Nonferrous Metal Oriented Advanced Structural Materials and Manufacturing Cooperative Innovation Center, Central South University, Changsha 410083, China
全文: PDF(5513 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 通过聚焦离子束在5A90铝锂合金试样表面蚀刻微米尺寸高分辨网格,在温度480℃、初始变形速率1×10-3s-1的变形条件下,定量研究其超塑性变形过程中晶界滑移和晶内位错滑移对总变形的贡献量,并采用扫描电镜、电子背散射衍射观察合金超塑性变形的组织演变作为佐证。结果表明:位错运动在超塑性变形初期(ε<0.65)的贡献量约为60%~80%,为主要变形机制,在该阶段条带状晶粒逐渐细化和等轴化,平均晶粒尺寸减小约40%,晶粒转动作为协调机制;随着应变量的增大,发生明显的动态再结晶,晶粒尺寸开始增大,晶内位错滑移的作用逐渐减小,晶界滑移成为变形的主要机制。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
叶凌英
杨栋
李红萍
张新明
廖荣跃
关键词 5A90铝锂合金超塑性晶内位错滑移晶粒转动晶界滑移    
Abstract:The contribution of grain boundary sliding(GBS) and intragranular dislocation slip(IDS) in the 5A90 Al-Li alloy during superplastic deformation at 480℃ and an initial strain rate of 1×10-3s-1 was quantitatively investigated by analyzing the deformation-induced changes in the sample surface having micron grids etched by focused ion beam. As supporting evidence, scanning electron microscope and electron back scattering diffraction were used to analyze the microstructure evolution during superplastic deformation. The results show that superplasticity is the result primarily contributed by intragranular dislocation slip(about 60%-80%)in the first stage(ε<0.65) and grain rotation is coordination mechanism, with the banded grains refined and equiaxed and the average grain size decreased(about 40%). With the increase of strain, obvious dynamic recrystallization occurs, which gives rise to the increasing grain size, and decreased effect of intragranular dislocation slip, grain boundary sliding gradually becomes the main mechanism.
Key words5A90 Al-Li alloy    superplasticity    intragranular dislocation slip    grain rotation    grain boundary sliding
收稿日期: 2018-03-27      出版日期: 2019-11-21
中图分类号:  TG135+.3  
  TG146.2  
基金资助: 
通讯作者: 叶凌英(1981-),男,副教授,博士,主要从事铝合金高温塑性变形行为研究,联系地址:湖南省长沙市麓山南路932号中南大学材料科学与工程学院(410083),E-mail:yelingying_1981@163.com     E-mail: yelingying_1981@163.com
引用本文:   
叶凌英, 杨栋, 李红萍, 张新明, 廖荣跃. 5A90铝锂合金超塑性变形机理的定量研究[J]. 材料工程, 2019, 47(11): 163-170.
YE Ling-ying, YANG Dong, LI Hong-ping, ZHANG Xin-ming, LIAO Rong-yue. Quantitative study of superplastic deformation mechanism of 5A90 Al-Li alloy. Journal of Materials Engineering, 2019, 47(11): 163-170.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000326      或      http://jme.biam.ac.cn/CN/Y2019/V47/I11/163
[1] PEARSON C E. The viscous properties of extruded eutectic alloys of lead-tin and bismuth-tin[J]. Journal of the Institute of Metals, 1934, 54:111-124.
[2] BOCHVAR A A, SVISDERSKAYA Z A. The phenomenon of superplasticity in zinc and aluminum alloys[J]. Akademiya Nauk Kirgizskoy SSSR Otdel Tekh Nauk, 1945, 9:821-827.
[3] VASTAVA R B, LANGDON T G. An investigation of intercrystalline and interphase boundary sliding in the superplastic Pb-62% Sn eutectic[J]. Acta Metallurgica, 1979, 27:251-257.
[4] LIN Z R, CHOKSHI A H, LANGDON T G. An investigation of grain boundary sliding in superplasticity at high elongations[J]. Journal of Materials Science, 1988, 23(8):2712-2722.
[5] BATE P S, RIDLEY N, ZHANG B. Mechanical behaviour and microstructural evolution in superplastic Al-Li-Mg-Cu-Zr AA8090[J]. Acta Materialia, 2007, 55(15):4995-5006.
[6] BATE P S, HUMPHREYS F J, RIDLEY N, et al. Micros-tructure and texture evolution in the tension of superplastic Al-6Cu-0.4Zr[J]. Acta Materialia, 2005, 53(10):3059-3069.
[7] RUST M A, TODD R I. High resolution surface studies of superplastic deformation[J]. Materials Science Forum, 2007, 551/552:615-620.
[8] 王国玮,叶凌英,孙大翔,等. 5A90铝锂合金的超塑性变形行为[J]. 中南大学学报(自然科学版), 2017, 48(5):1141-1148. WANG G W,YE L Y,SUN D X,et al. Superplastic deformation behavior of 5A90 aluminum-lithium alloy[J]. Journal of Central South University(Science and Technology), 2017, 48(5):1141-1148.
[9] 张盼,叶凌英,顾刚,等. 5A90铝锂合金超塑性变形的组织演变及变形机理[J]. 材料工程, 2014(9):51-56. ZHANG P,YE L Y,GU G,et al.Microstructural evolution and deformation mechanism of 5A90 Al-Li alloy during superplastic deformation[J]. Journal of Materials Engineering,2014(9):51-56.
[10] 叶凌英. 细晶铝锂合金板材的制备原理、技术及超塑变形行为[D]. 长沙:中南大学, 2010. YE L Y. The principle, technology and superplastic deformation behavior of fine-grained Al-Li alloy sheet[D]. Changsha:Cent-ral South University, 2010.
[11] 陈敏,叶凌英,孙大翔,等. 升温速率对7B04铝合金板材晶粒组织和超塑性的影响[J]. 材料工程, 2017, 45(3):112-118. CHEN M, YE L Y, SUN D X,et al. Effect of heating rate on grain structure and superplasticity of 7B04 aluminum alloy sheets[J]. Journal of Materials Engineering, 2017, 45(3):112-118.
[12] 吴诗惇. 金属超塑性变形理论[M]. 北京:国防工业出版社, 1997:98-107. WU S D. The theory of metal superplastic deformation[M]. Beijing:National Defense Industry Press, 1997:98-107.
[13] 丁凌,王志录,孙前江,等. TC6钛合金超塑性变形[J]. 航空材料学报, 2016, 36(6):23-28. DING L, WANG Z L, SUN Q J,et al. Superplastic deformation of TC6 alloy[J]. Journal of Aeronautical Materials, 2016, 36(6):23-28.
[14] GIFKINS R C. Grain-boundary sliding and its accommodation during creep and superplasticity[J]. Metallurgical Transactions A, 1976, 7(8):1225-1232.
[15] 张盼. 5A90铝锂合金超塑性变形微取向演变及变形机理[D]. 长沙:中南大学, 2014. ZHANG P. Micro-orientation evolution and deformation mech-anism of Al-Li alloy 5A90 during superplastic deformation[D]. Changsha:Central South University, 2014.
[16] KAIBYSHEV R, OSIPOVA O. Superplastic behavior of an Al-Li-Cu-Mg alloy[J]. Materials Science and Technology, 2005, 21(10):1209-1216.
[17] 陈浦泉. 组织超塑性[M]. 哈尔滨:哈尔滨工业大学出版社, 1988:72-75. CHEN P Q. Microstructural superplasticity[M]. Harbin:Harbin Institute of Technology Press, 1988:72-75.
[18] CAO W D, LU X P, CONRAD H. Whisker formation and the mechanism of superplastic deformation[J]. Acta Materialia, 1996, 44(2):697-706.
[19] MIKHAYLOVSKAYA A V, YAKOVTSEVA O A, GOLO-VIN I S, et al. Superplastic deformation mechanisms in fine-grained Al-Mg based alloys[J]. Materials Science and Engi-neering:A, 2015, 627:31-41.
[20] YAKOVTSEVA O A, MIKHAYLOVSKAYA A V, LEVCH-ENKO V S, et al. Study of the mechanisms of superplastic deformation in Al-Mg-Mn-based alloys[J]. Strength and Plasti-city, 2015, 116(9):908-916.
[1] 冀光普, 何秀芳, 廖海峰, 戴乐阳, 孙迪, 蔡谷昌. 等离子体辅助球磨制备表面修饰片状纳米Cu粉及摩擦学性能[J]. 材料工程, 2019, 47(6): 114-120.
[2] 叶凌英, 孙泉, 李红萍, 刘胜胆, 张新明. 预变形对2050铝锂合金晶粒细化及超塑性的影响[J]. 材料工程, 2019, 47(12): 92-97.
[3] 刁仲驰, 姚泽坤, 申景园, 刘瑞, 郭鸿镇. TC18钛合金的超塑性行为与变形机制[J]. 材料工程, 2017, 45(5): 80-85.
[4] 张宁, 王耀奇, 侯红亮, 张艳苓, 董晓萌, 李志强. 7B04铝合金超塑性变形行为[J]. 材料工程, 2017, 45(4): 27-33.
[5] 陈敏, 叶凌英, 孙大翔, 杨涛, 王国玮, 张新明. 升温速率对7B04铝合金板材晶粒组织和超塑性的影响[J]. 材料工程, 2017, 45(3): 112-118.
[6] 江海涛, 段晓鸽, 蔡正旭, 王丹. 异步轧制AZ31镁合金板材的超塑性工艺及变形机制[J]. 材料工程, 2015, 43(8): 7-12.
[7] 付明杰, 许慧元, 刘佳佳, 韩秀全. 基于最大m值法和恒应变速率法的Ti3Al基合金超塑变形行为研究[J]. 材料工程, 2015, 43(11): 32-38.
[8] 张盼, 叶凌英, 顾刚, 蒋海春, 张新明. 5A90铝锂合金超塑性变形的组织演变及变形机理[J]. 材料工程, 2014, 0(9): 51-56.
[9] 郑漫庆, 王高潮, 徐雪峰, 喻淼真. TC4-DT合金的超塑性变形及其本构方程[J]. 材料工程, 2014, 0(9): 63-67.
[10] 郑漫庆, 王高潮, 喻淼真, 徐雪峰. 应变速率循环法构建TC4-DT钛合金本构方程[J]. 材料工程, 2014, 0(8): 32-35.
[11] 王淑云, 张敏聪, 东赟鹏, 刘趁意, 陈由红, 孙兴. FGH96合金热挤压棒材超塑性研究[J]. 材料工程, 2012, 0(7): 24-28.
[12] 刘莹莹, 姚泽坤, 郭鸿镇. Ti3Al金属间化合物超塑性的研究进展[J]. 材料工程, 2008, 0(4): 65-69.
[13] 宋美娟, 汪凌云, 刘饶川, 向毅. 镁合金板材超塑性成形极限的实验研究[J]. 材料工程, 2007, 0(7): 29-32.
[14] 林莺莺, 潘洪泗, 李淼泉. 钛合金的氢处理技术及其对超塑性的影响[J]. 材料工程, 2005, 0(5): 60-64.
[15] 李小军, 吴建生, 章靖国, 史海生, 林一坚. 喷射成形超高碳钢超塑性变形后的微观组织[J]. 材料工程, 2004, 0(6): 20-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn