Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (1): 106-111    DOI: 10.11868/j.issn.1001-4381.2018.000487
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
Al0.1CoCrFeNi高熵合金的力学性能和变形机理
陈刚1, 王璐1, 杨静2, 李强1, 吕品1, 马胜国1,2,3
1. 太原理工大学 应用力学与生物医学工程研究所, 太原 030024;
2. 太原理工大学 材料强度与结构冲击山西省重点实验室, 太原 030024;
3. 太原理工大学 力学国家级实验教学示范中心, 太原 030024
Mechanical properties and deformation mechanisms of Al0.1CoCrFeNi high-entropy alloys
CHEN Gang1, WANG Lu1, YANG Jing2, LI Qiang1, LYU Pin1, MA Sheng-guo1,2,3
1. Institute of Applied Mechanics and Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China;
2. Shanxi Key Laboratory of Material Strength and Structural Impact, Taiyuan University of Technology, Taiyuan 030024, China;
3. National Demonstration Center for Experimental Mechanics Education, Taiyuan University of Technology, Taiyuan 030024, China
全文: PDF(10854 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 Al0.1CoCrFeNi高熵合金由真空磁悬浮熔炼制备而成,利用INSTRON力学试验机进行室温准静态拉伸,采用X射线衍射仪(XRD)、光学显微镜、扫描电镜(SEM)、透射电镜(TEM)和纳米压痕仪对实验前后样品的晶体结构、形貌、成分、组织、硬度和蠕变行为进行了研究。结果表明,经拉伸变形后,合金具有优异的强塑积(约为24GPa·%)、显著的应变硬化效应和更好的抗蠕变行为。试样的断裂模式为典型的微孔聚集型断裂。晶粒内部含有大量的微带组织,其带宽为200~300nm。分析认为,微观组织中的微带诱导塑性效应是合金具有优异的应变硬化能力的一个重要原因。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈刚
王璐
杨静
李强
吕品
马胜国
关键词 高熵合金微观组织力学性能微带诱导塑性效应    
Abstract:The Al0.1CoCrFeNi high-entropy alloy (HEA) was melted by vacuum magnetic levitation, and quasi-static tensile experiments were performed by using an INSTRON mechanical testing system. The crystal structure, surface morphology, composition, microstructure, hardness, and creep behavior of the samples before and after the experiment were analyzed by X-ray diffraction, optical microscopy, scanning electron microscopy, transmission electron microscopy, and nanoidentation. Results reveal that after tensile deformation, the alloy has an excellent strength-ductility combination, a significant strain-hardening effect, and an improved creep resistance. The fracture mode of sample is the typical microvoid accumulation fracture; there are a lot of microbands (the band width is about 200-300nm) inside the grains. The excellent strain-hardening ability is believed to be originated from the microband-induced plasticity effect during tensile loading.
Key wordshigh-entropy alloy    microstructure    mechanical property    microband-induced plasticity effect
收稿日期: 2018-04-28      出版日期: 2019-01-16
中图分类号:  TG113  
通讯作者: 马胜国(1983-),男,讲师,博士,研究方向为新型金属材料(如高熵合金、非晶合金等)的冲击动力学行为研究,联系地址:山西省太原市万柏林区迎泽西大街79号太原理工大学迎西校区(030024),E-mail:mashengguo@tyut.edu.cn     E-mail: mashengguo@tyut.edu.cn
引用本文:   
陈刚, 王璐, 杨静, 李强, 吕品, 马胜国. Al0.1CoCrFeNi高熵合金的力学性能和变形机理[J]. 材料工程, 2019, 47(1): 106-111.
CHEN Gang, WANG Lu, YANG Jing, LI Qiang, LYU Pin, MA Sheng-guo. Mechanical properties and deformation mechanisms of Al0.1CoCrFeNi high-entropy alloys. Journal of Materials Engineering, 2019, 47(1): 106-111.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000487      或      http://jme.biam.ac.cn/CN/Y2019/V47/I1/106
[1] YEH J W, CHEN S K, LIN S J, et al. Nanostructured high-entropy alloys with multiple principal elements:novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6(5):299-303.
[2] CANTOR B, CHANG I T H, KNIGHT P, et al. Microstructural development in equiatomic multicomponent alloys[J]. Materials Science and Engineering:A, 2004, 375/377(1):213-218.
[3] YAO H W, QIAO J W, GAO M C, et al. NbTaV-(Ti,W) refractory high-entropy alloys:experiments and modeling[J]. Materials Science and Engineering:A, 2016, 674:203-211.
[4] ZHAO Y J, QIAO J W, MA S G, et al. A hexagonal close-packed high-entropy alloy:the effect of entropy[J]. Materials & Design, 2016, 96:10-15.
[5] GLUDOVATZ B, HOHENWARTER A, CATOOR D, et al. A fracture-resistant high-entropy alloy for cryogenic applications[J]. Science, 2014, 345(6201):1153-1158.
[6] MA S G, JIAO Z M, QIAO J W, et al. Strain rate effects on the dynamic mechanical properties of the AlCrCuFeNi2 high-entropy alloy[J]. Materials Science and Engineering:A, 2016, 649:35-38.
[7] SENKOV O N, WILKS G B, SCOTT J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20, refractory high entropy alloys[J]. Intermetallics, 2011, 19(5):698-706.
[8] HSU C Y, SHEU T S, YEH J W, et al. Effect of iron content on wear behavior of AlCoCrFexMo0.5Ni high-entropy alloys[J]. Wear, 2010, 268(5):653-659.
[9] 刘用,马胜国,刘英杰,等. AlxCrCuFeNi2多主元高熵合金的摩擦磨损性能[J]. 材料工程, 2018, 46(2):99-104. LIU Y, MA S G, LIU Y J, et al. Friction and wear properties of AlxCrCuFeNi2 high-entropy alloys with multi-principal-elements[J]. Journal of Materials Engineering, 2018, 46(2):99-104.
[10] MEYER M A. Mechanical behavior of materials[M]. Cambridge, United Kingdom:Cambridge University Press, 2004.
[11] GUTIERREZ-URRUTIA I, ZAEFFERER S, RAABE D. The effect of grain size and grain orientation on deformation twinning in a Fe-22wt.%Mn-0.6wt.%C TWIP steel[J]. Materials Science and Engineering:A, 2010, 527(15):3552-3560.
[12] SHEN Y F, JIA N, MISRA R D K, et al. Softening behavior by excessive twinning and adiabatic heating at high strain rate in a Fe-20Mn-0.6C TWIP steel[J]. Acta Materialia, 2016, 103:229-242.
[13] XU S, RUAN D, BEYNON J H, et al. Dynamic tensile behavior of TWIP steel under intermediate strain rate loading[J]. Materials Science and Engineering:A, 2013, 573(573):132-140.
[14] WANG Z, GAO M C, MA S G, et al. Effect of cold rolling on the microstructure and mechanical properties of Al0.25CoCrFe1.25Ni1.25, high-entropy alloy[J]. Materials Science and Engineering:A, 2015, 645:163-169.
[15] GAO M C, YEH J W, LIAW P K, et al. High-entropy alloys:fundamentals and applications[M]. Basel, Switzerland:Springer, 2015.
[16] GUTIERREZ-URRUTIA I, RAABE D. Microbanding mechanism in an Fe-Mn-C high-Mn twinning-induced plasticity steel[J]. Scripta Materialia, 2013, 69(1):53-56.
[17] WU W, SONG M, SONG N, et al. Dual mechanisms of grain refinement in a FeCoCrNi high-entropy alloy processed by high-pressure torsion[J]. Scientific Reports, 2017, 7:46720.
[18] WU W, GUO L, LIU B, et al. Effects of torsional deformation on the microstructures and mechanical properties of a CoCrFeNiMo0.15 high-entropy alloy[J]. Philosophical Magazine, 2017, 97(34):1-17.
[19] WANG Z, BAKER I, GUO W, et al. The effect of carbon on the microstructures, mechanical properties and deformation mechanisms of thermo-mechanically treated Fe40.4Ni11.3Mn34.8Al7.5Cr6, high entropy alloys[J]. Acta Materialia, 2017, 126:346-360.
[20] HUANG J C, GRAY Ⅲ G T. Microband formation in shock-loaded and quasi-statically deformed metals[J]. Acta Metallurgica, 1989, 37(12):3335-3347.
[21] ALAGARSAMY K, FORTIER A, KOMARASAMY M, et al. Mechanical properties of high entropy alloy Al0.1CoCrFeNi for peripheral vascular stent application[J]. Cardiovascular Engineering and Technology, 2016, 7(4):448-454.
[22] ZHANG L, YU P, CHENG H, et al. Nanoindentation creep behavior of an Al0.3CoCrFeNi high-entropy alloy[J]. Metallurgical & Materials Transactions A, 2016, 47(12):1-5.
[23] LI Z, ZHAO S, DIAO H, et al. High-velocity deformation of Al0.3CoCrFeNi high-entropy alloy:remarkable resistance to shear failure[J]. Scientific Reports, 2017, 7:42742.
[1] 杨旭东, 安涛, 邹田春, 巩天琛. 湿热环境对碳纤维增强树脂基复合材料力学性能的影响及其损伤机理[J]. 材料工程, 2019, 47(7): 84-91.
[2] 王聃, 陶德华, 黄秀玲, 华子恺. 聚甲基丙稀酸羟乙酯甘油凝胶仿软骨材料的制备与性能[J]. 材料工程, 2019, 47(7): 71-75.
[3] 马明星, 王志新, 梁存, 周家臣, 张德良, 朱达川. CeO2掺杂对AlCoCrCuFe高熵合金的组织结构与摩擦磨损性能的影响[J]. 材料工程, 2019, 47(7): 106-111.
[4] 王桂芳, 刘忠侠, 张国鹏. 球磨时间对热压烧结制备TiC-CoCrFeNi复合材料微观组织及力学性能的影响[J]. 材料工程, 2019, 47(6): 94-100.
[5] 刘文祎, 徐聪, 刘茂文, 肖文龙, 马朝利. 稀土元素Gd对Al-Si-Mg铸造合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(6): 129-135.
[6] 王飞云, 金建军, 江志华, 王晓震, 胡春文. 热处理温度对新型马氏体时效不锈钢微观组织和性能的影响[J]. 材料工程, 2019, 47(6): 152-160.
[7] 陈海龙, 杨学锋, 王守仁, 鹿重阳, 吴元博. 改性酚醛树脂陶瓷摩擦材料的摩擦磨损性能[J]. 材料工程, 2019, 47(6): 108-113.
[8] 闫钊鸣, 张治民, 杜玥, 张冠世, 任璐英. 均匀化处理对Mg-13Gd-3.5Y-2Zn-0.5Zr镁合金组织和力学性能的影响[J]. 材料工程, 2019, 47(5): 93-99.
[9] 欧阳佩旋, 弭光宝, 李培杰, 何良菊, 曹京霞, 黄旭. NiCrAl/YSZ/NiCrAl-B.e复合涂层对α+β型高温钛合金燃烧产物的影响[J]. 材料工程, 2019, 47(5): 43-52.
[10] 薛子明, 雷卫宁, 王云强, 钱海峰, 李奇林. 超临界条件下脉冲占空比对石墨烯复合镀层微观结构和性能的影响[J]. 材料工程, 2019, 47(5): 53-62.
[11] 唐文珅, 杨新岐, 李胜利, 李会军. 焊接参数对铁素体不锈钢搅拌摩擦焊接头组织及性能的影响[J]. 材料工程, 2019, 47(5): 115-121.
[12] 黄利, 黄光杰, 吴晓东, 曹玲飞, 李佳. 预处理工艺对双辊铸轧3003铝合金再结晶行为的影响[J]. 材料工程, 2019, 47(4): 135-142.
[13] 李惠, 肖文龙, 张艺镡, 马朝利. 多重结构Ti-B4C/Al2024复合材料的组织和力学性能[J]. 材料工程, 2019, 47(4): 152-159.
[14] 崔岩, 项俊帆, 曹雷刚, 杨越, 刘园. 碳化硅颗粒表面吸附质对铝基复合材料制备及力学性能的影响[J]. 材料工程, 2019, 47(4): 160-166.
[15] 李亚锋, 礼嵩明, 黑艳伟, 邢丽英, 陈祥宝. 太阳辐照对芳纶纤维及其复合材料性能的影响[J]. 材料工程, 2019, 47(4): 39-46.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn