Progress in Coupon Tests of SiCf/SiC Ceramic Matrix Composites Used for Aero Engines
LIU Hu1,2, YANG Jin-hua1,2, ZHOU Yi-ran1, LYU Xiao-xu1, QI Zhe1, JIAO Jian1,2
1. National Key Laboratory of Advanced Composites, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China;
2. Aviation Key Laboratory of Science and Technology on Advanced Corrosion and Protection for Aviation Material, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
Abstract:The research of SiCf/SiC ceramic matrix composites (CMCs) as well as their applications in aero engines has obtained rapid development recently. This is owing to the large quantity of coupon tests performed on various properties of these materials, and the establishment of corresponding databases. Here, the physical and mechanical properties of CMCs developed by SNECMA, NASA and GE were reviewed. The influence of fabrication techniques on the properties of materials were discussed with an emphasis on tensile properties. Meanwhile, the service performances of these materials were summarized, including oxidation, water vapor/oxygen environmental resistance at high temperature, fatigue and creep behaviors, resistance to thermal shock and foreign object damage, along with the mechanism of damage and failure in environments such as heating, loading, water and oxidation. At last, some suggestions about domestic further research on performances testing for SiCf/SiC ceramic matrix composites were proposed.
[1] KATOH Y, SNEAD L L, HENAGER C H, et al. Current status and recent research achievements in SiC/SiC composites[J]. Journal of Nuclear Materials, 2014, 455(1/3):387-397.
[2] 卢国锋,乔生儒,许艳. 连续纤维增强陶瓷基复合材料界面层研究进展[J]. 材料工程, 2014(11):107-112. LU G F, QIAO S R, XU Y. Progress in research on interface layer of continuous fiber reinforced ceramic matrix composites[J]. Journal of Materials and Engineering, 2014(11):107-112.
[3] DING D. Processing, properties and applications of ceramic matrix composites, SiCf/SiC:an overview[M]//Advances in Ceramic Matrix Composites. Philadelphia:Woodhead Publishing, 2014:99-116.
[4] NASLAIN R. Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors:an overview[J]. Composites Science and Technology, 2004, 64(2):155-170.
[5] 穆阳,邓佳欣,李皓,等. 填料法制备SiCf/SiC复合材料的力学性能和高温介电性能[J]. 航空材料学报, 2018, 38(3):31-39. MU Y, DENG J X, LI H, et al. Mechanical and high-temperature dielectric properties of SiCf/SiC composites with SiO2 filler[J]. Journal of Aeronautical Materials, 2018, 38(3):31-39.
[6] UDAYAKUMAR A, GANESH A S, RAJA S, et al. Effect of intermediate heat treatment on mechanical properties of SiCf/SiC composites with BN interphase prepared by ICVI[J]. Journal of the European Ceramic Society, 2011, 31(6):1145-1153.
[7] 肖鹏,徐永东,张立同. 高温陶瓷基复合材料制备工艺的研究[J]. 材料工程, 2000(2):41-44. XIAO P, XU Y D, ZHANG L T. Study of processing of high temperature ceramic matrix composites[J]. Journal of Materials and Engineering, 2000(2):41-44.
[8] LIU H T, CHENG H F, WANG J, et al. Effects of the single layer CVD SiC interphases on the mechanical properties of the SiCf/SiC composites fabricated by PIP process[J]. Ceramics International, 2010, 36(7):2033-2037.
[9] YU H J, ZHOU X G, ZHANG W, et al. Mechanical behavior of SiCf/SiC composites with alternating PyC/SiC multilayer interphases[J]. Materials & Design, 2013, 44:320-324.
[10] YIN J, LEE S H, FENG L, et al. The effects of SiC precursors on the microstructures and mechanical properties of SiCf/SiC composites prepared via polymer impregnation and pyrolysis process[J]. Ceramics International, 2015, 41(3):4145-4153.
[11] 谭僖,刘伟,曹腊梅,等. 不同纤维预制体结构对SiCf/PyC/SiBCN复合材料力学性能的影响[J]. 航空材料学报, 2017, 37(4):45-51. TAN X, LIU W, CAO L M, et al. Effect of fabric preform structure on mechanical properties of SiCf/PyC/SiBCN composites[J]. Journal of Aeronautical Materials, 2017, 37(4):45-51.
[12] LEUCHS M. Chemical vapor infiltration processes for ceramic matrix composites:manufacturing, properties, applications[M]//Ceramic Matrix Composites-Fiber Reinforced Ceramics and their Applications. Weinheim:Wiley-VCH, 2008:141-164.
[13] KOTANI M, KONAKA K, OGIHARA S. The effect on the tensile properties of PIP-processed SiC/SiC composite of a chemical vapor-infiltrated SiC layer overlaid on the pyrocarbon interface layer[J]. Composites Part A:Applied Science and Manufacturing, 2016, 87:123-130.
[14] LUO Z, ZHOU X G, YU J S. Mechanical properties of SiC/SiC composites by PIP process with a new precursor at elevated temperature[J]. Materials Science and Engineering:A, 2014, 607:155-161.
[15] CORMAN G S, LUTHRA K L. Silicon melt infiltrated ceramic composites (HiPerCompTM)[M]//Handbook of Ceramic Composites. Boston:Kluwer Academic Publishers, 2004:99-116.
[16] DICARLO J A, YUN H M, MORSCHER G N, et al. SiC/SiC composites for 1200℃ and above[M]//Handbook of Ceramic Composites. Boston:Kluwer Academic Publishers, 2004:77-98.
[17] 田仕,王为民,张帆,等. 致密陶瓷材料密度和气孔率的测试方法[J]. 理化检验(物理分册), 2011, 47(8):476-479. TIAN S, WANG W M, ZHANG F, et al. Testing method of density and porosity of dense ceramic materials[J]. PTCA Part A Phys Test,2011, 47(8):476-479.
[18] 朱海玲,陈沙鸥,李达,等.测定陶瓷材料密度及其气孔率的方法[J].理化检验(物理分册),2006, 42(6):289-291. ZHU H L, CHEN S O, LI D, et al.Measuring method for the density and the pore ratio of ceramic materials[J]. PTCA Part A Phys Test,2006, 42(6):289-291.
[19] YONATHAN P, LEE J H, YOON D H, et al. Improvement of SiCf/SiC density by slurry infiltration and tape stacking[J]. Materials Research Bulletin, 2009, 44(11):2116-2122.
[20] WANG Z, DONG S M, HE P, et al. Fabrication of carbon fiber reinforced ceramic matrix composites with improved oxidation resistance using boron as active filler[J]. Journal of the European Ceramic Society, 2010, 30(3):787-792.
[21] MORSCHER G N. Tensile creep and rupture of 2D-woven SiC/SiC composites for high temperature applications[J]. Journal of the European Ceramic Society, 2010, 30(11):2209-2221.
[22] HEIDENREICH B. Melt infiltration process[M]//Ceramic Matrix Composites-Fiber Reinforced Ceramics and their Applications. Weinheim:Wiley-VCH, 2008:113-139.
[23] 董绍明,胡建宝,张翔宇. SiC/SiC复合材料MI工艺制备技术[J]. 航空制造技术, 2014(6):35-40. DONG S M, HU J B, ZHANG X Y. Melt infiltration process for SiC/SiC composites[J]. Aeronautical Manufacturing Technology, 2014(6):35-40.
[24] 申诗典. 基于XCT技术的陶瓷基复合材料热膨胀系数预测[D]. 南京:南京航空航天大学, 2017. SHEN S D. Prediction for coefficient of thermal expansion of ceramic matrix composites based on XCT technology[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2017.
[25] 中国航空材料手册编辑委员会.中国航空材料手册第2卷[M]. 2版.北京:中国标准出版社, 2002. The Editorial Board of China Aeronautical Materials Handbook. China aeronautical materials handbook Vol 2[M]. 2nd ed.Beijing:Standards Press of China, 2002.
[26] LAMON J. Chemical vapor infiltrated SiC/SiC composites (CVI SiC/SiC)[M]//Handbook of Ceramic Composites. Boston:Kluwer Academic Publishers, 2004:55-76.
[27] 万德田,王艳萍. 极端环境下的陶瓷材料力学性能评价技术及装置[J]. 中国建材, 2014(12):104-108. WAN D T, WANG Y P. Technology and device for evaluating mechanical properties of ceramic materials in extreme environments[J]. China Building Materials, 2014(12):104-108.
[28] 樊在霞,张瑜,陈彦模. 针织物增强复合材料拉伸性能的研究进展[J]. 纺织导报, 2004(6):124-127. FAN Z X, ZHANG Y, CHEN Y M. The tensile properties of knitted fabric-reinforced composite materials[J]. China Textile Leader, 2004(6):124-127.
[29] CORMAN G, UPADHYAY R, SINHA S, et al. General electric company:selected applications of ceramics and composite materials[M]//Materials Research for Manufacturing-An Industrial Perspective of Turning Materials into New Products. Cham Switzerland:Springer International Publishing, 2016:59-91.
[30] MORSCHER G N, DICARLO J A, KISER J D, et al. Effects of fiber architecture on matrix cracking for melt-infiltrated SiC/SiC composites[J]. International Journal of Applied Ceramic Technology, 2009, 7(3):276-290.
[31] MORSCHER G N, PUJAR V V. Creep and stress-strain behavior after creep for SiC fiber reinforced, melt-infiltrated SiC matrix composites[J]. Journal of the American Ceramic Society, 2006, 89(5):1652-1658.
[32] MORSCHER G N, SINGH M, KISER J D, et al. Modeling stress-dependent matrix cracking and stress-strain behavior in 2D woven SiC fiber reinforced CVI SiC composites[J]. Composites Science and Technology, 2007, 67(6):1009-1017.
[33] MORSCHER G N, PUJAR V V. Design guidelines for in-plane mechanical properties of SiC fiber-reinforced melt-infiltrated SiC composites[J]. International Journal of Applied Ceramic Technology, 2009, 6(2):151-163.
[34] MORSCHER G N. Tensile creep of melt-infiltrated SiC/SiC composites with unbalanced Sylramic-iBN fiber architectures[J]. International Journal of Applied Ceramic Technology, 2011, 8(2):239-250.
[35] MORSCHER G N, YUN H M, DICARLO J A. In-plane cracking behavior and ultimate strength for 2D woven and braided melt-infiltrated SiC/SiC composites tensile loaded in off-axis fiber directions[J]. Journal of the American Ceramic Society, 2007, 90(10):3185-3193.
[36] NASIRI N A, PATRA N, NI N, et al. Oxidation behaviour of SiC/SiC ceramic matrix composites in air[J]. Journal of the European Ceramic Society, 2016, 36(14):3293-3302.
[37] ROY J, CHANDRA S, DAS S, et al. Oxidation behaviour of silicon carbide-a review[J]. Reviews on Advanced Materials Science, 2014, 38(1):29-39.
[38] ERVIN G. Oxidation behavior of silicon carbide[J]. Journal of the American Ceramic Society, 1958, 41(9):347-352.
[39] PULTZ W W, HERTL W. SiO2+SiC reaction at elevated temperatures part 1-kinetics and mechanism[J]. Transactions of the Faraday Society, 1966, 62:2499-2504.
[40] UNAL O, ECKEL A J, LAABS F C. The 1400℃ oxidation effect on microstructure, strength and cyclic life of SiC/SiC composites[J]. Scripta Metallurgica et Materialia, 1995, 33(6):983-988.
[41] MORSCHER G N, HURST J, BREWER D. Intermediate-temperature stress rupture of a woven Hi-Nicalon, BN-interphase, SiC-matrix composite in air[J]. Journal of the American Ceramic Society, 2000, 83(6):1441-1449.
[42] LAROCHELLE K J, MORSCHER G N. Tensile stress rupture behavior of a woven ceramic matrix composite in humid environments at intermediate temperature-part I[J]. Applied Composite Materials, 2006, 13(3):147-172.
[43] OPILA E J. Oxidation and volatilization of silica formers in water vapor[J]. Journal of the American Ceramic Society, 2003, 86(8):1238-1248.
[44] PARK D J, JUNG Y I, KIM H G, et al. Oxidation behavior of silicon carbide at 1200℃ in both air and water-vapor-rich environments[J]. Corrosion Science, 2014, 88:416-422.
[45] OPILA E J, HANN R E. Paralinear oxidation of CVD SiC in water vapor[J]. Journal of the American Ceramic Society, 1997, 80(1):197-205.
[46] TORTORELLI P F, MORE K L. Effects of high water-vapor pressure on oxidation of silicon carbide at 1200℃[J]. Journal of the American Ceramic Society, 2003, 86(8):1249-1255.
[47] NASLAIN R, GUETTE A, REBILLAT F, et al. Oxidation mechanisms and kinetics of SiC-matrix composites and their constituents[J]. Journal of Materials Science, 2004, 39(24):7303-7316.
[48] MORSCHER G N. Fiber-reinforced ceramic matrix composites for aero engines[M]//Encyclopedia of Aerospace Engineering. Hoboken, New Jersey:John Wiley & Sons Inc, 2014:1-10.
[49] MORSCHER G N. Stress-environmental effects on fiber-reinforced SiC-based composites[M]//Ceramic Matrix Composites-Materials, Modeling and Technology. Hoboken, New Jersey:John Wiley & Sons Inc, 2014:334-352.
[50] MALL S, RYBA J L. Effects of moisture on tensile stress rupture behavior of a SiC/SiC composite at elevated temperatures[J]. Composites Science and Technology, 2008, 68:274-282.
[51] OJARD G, CALOMINO A, MORSCHER G, et al. Post creep/dwell fatigue testing of MI SiC/SiC composites[M]//Mechanical Properties and Performance of Engineering Ceramics and Composites Ⅲ. Hoboken, New Jersey:John Wiley & Sons Inc,2008:135-143.
[52] OJARD G, GOWAYED Y, CHEN J, et al. Time-dependent response of MI SiC/SiC composites part 1:standard samples[M]//Mechanical Properties and Performance of Engineering Ceramics and Composites Ⅲ. Hoboken, New Jersey:John Wiley & Sons Inc, 2008:145-153.
[53] GOWAYED Y, OJARD G, CHEN J, et al. Time-dependent response of MI SiC/SiC composites part 2:samples with holes[M]//Mechanical Properties and Performance of Engineering Ceramics and CompositesⅢ. Hoboken, New Jersey:John Wiley & Sons Inc, 2008:155-162.
[54] BUNSELL A R, BERGER M H. Fine diameter ceramic fibres[J]. Journal of the European Ceramic Society, 2000, 20(13):2249-2260.
[55] YUN H M, DICARLO J A. Non-oxide (silicon carbide) fibers[M]//Handbook of Ceramic Composites. Boston:Kluwer Academic Publishers, 2004:33-52.
[56] RUGGLES-WRENN M B, CHRISTENSEN D T, CHAMBERLAIN A L, et al. Effect of frequency and environment on fatigue behavior of a CVI SiC/SiC ceramic matrix composite at 1200℃[J]. Composites Science and Technology, 2011, 71(2):190-196.
[57] RUGGLES-WRENN M, BOUCHER N, PRZYBYLA C. Fatigue of three advanced SiC/SiC ceramic matrix composites at 1200℃ in air and in steam[J]. International Journal of Applied Ceramic Technology, 2018, 15(1):3-15.
[58] MORSCHER G N, OJARD G, MILLER R, et al. Tensile creep and fatigue of Sylramic-iBN melt-infiltrated SiC matrix composites:retained properties, damage development, and failure mechanisms[J]. Composites Science and Technology, 2008, 68(15/16):3305-3313.
[59] KIM T T, MALL S, ZAWADA L P, et al. Simultaneous fatigue and combustion exposure of a SiC/SiC ceramic matrix composite[J]. Journal of Composite Materials, 2010, 44(25):2991-3016.
[60] SABELKIN V, MALL S, COOK T S, et al. Fatigue and creep behaviors of a SiC/SiC composite under combustion and laboratory environments[J]. Journal of Composite Materials, 2016, 50(16):2145-2153.
[61] BERTRAND D J, SABELKIN V, ZAWADA L, et al. Fatigue behavior of sylramic-iBN/BN/CVI SiC ceramic matrix composite in combustion environment[J]. Journal of Materials Science, 2015, 50(22):7437-7447.
[62] WANG H, SINGH R N. Thermal-shock behavior of ceramics and ceramic composites[J]. International Materials Reviews, 1994, 39(6):228-244.
[63] CHAWLA N, CHAWLA K K, KOOPMAN M, et al. Thermal-shock behavior of a Nicalon-fiber-reinforced hybrid glass-ceramic composite[J]. Composites Science and Technology, 2001, 61(13):1923-1930.
[64] LEE S P, LEE J K, SON I S, et al. Thermal shock properties of 2D-SiCf/SiC composites[J]. Fusion Engineering and Design, 2012, 87(7/8):1244-1248.
[65] SALEKEEN S, AMOAKO J N, MAHFUZ H, et al. Mechanical property degradation of a Nicalon fiber reinforced SiNC ceramic matrix composite under thermal shock loading[J]. Composite Structures, 2007, 78(4):477-485.
[66] KAGAWA Y. Thermal shock damage in a two-dimensional SiC/SiC composite reinforced with woven SiC fibers[J]. Composites Science and Technology, 1997, 57(5):607-611.
[67] SINGH R N, WANG H Y. Thermal-shock behavior of fiber-reinforced ceramic-matrix composites[J]. Composites Engineering, 1995, 5(10/11):1287-1297.
[68] WANG H Y, SINGH R N, LOWDEN R A. Thermal shock behavior of two-dimensional woven fiber-reinforced ceramic composites[J]. Journal of the American Ceramic Society, 1996, 79(7):1783-1792.
[69] WANG H, SINGH R N, LOWDEN R A. Thermal shock behaviour of unidirectional, 0°/90°, and 2-D woven fibre-reinforced CVI SiC matrix composites[J]. Journal of Materials Science, 1997, 32(12):3305-3313.
[70] UDAYAKUMAR A, STALIN M, ABHAYALAKSHMI M B, et al. Effect of thermal cycling of SiCf/SiC composites on their mechanical properties[J]. Journal of Nuclear Materials, 2013, 442(1/3):384-389.
[71] CHOI S R. Foreign object damage phenomenon by steel ball projectiles in a SiC/SiC ceramic matrix composite at ambient and elevated temperatures[J]. Journal of the American Ceramic Society, 2008, 91(9):2963-2968.
[72] CHOI S R, KOWALIK R W. Interlaminar crack growth resistances of various ceramic matrix composites in mode Ⅰ and mode Ⅱ loading[J]. Journal of Engineering for Gas Turbines and Power, 2008, 130(3).doi:10.1115/1.2800349
[73] OGI K, OKABE T, TAKAHASHI M, et al. Experimental characterization of high-speed impact damage behavior in a three-dimensionally woven SiC/SiC composite[J]. Composites Part A, 2010, 41(4):489-498.
[74] YASHIRO S, OGI K, OSHITA M. High-velocity impact damage behavior of plain-woven SiC/SiC composites after thermal loading[J]. Composites Part B, 2012, 43(3):1353-1362.
[75] BHATT R T, CHOI S R, COSGRIFF L M, et al. Impact resistance of uncoated SiC/SiC composites[J]. Materials Science and Engineering:A, 2008, 476(1/2):20-28.
[76] HERB V, MARTIN E, COUÉGNAT G. Damage analysis of thin 3D-woven SiC/SiC composite under low velocity impact loading[J]. Composites Part A, 2012, 43(2):247-253.