Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (11): 1-12    DOI: 10.11868/j.issn.1001-4381.2018.000503
  综述 本期目录 | 过刊浏览 | 高级检索 |
国外航空发动机用SiCf/SiC复合材料的材料级性能测试研究进展
刘虎1,2, 杨金华1,2, 周怡然1, 吕晓旭1, 齐哲1, 焦健1,2
1. 中国航发北京航空材料研究院 先进复合材料国防科技重点实验室, 北京 100095;
2. 中国航发北京航空材料研究院 航空材料先进腐蚀与防护航空科技重点实验室, 北京 100095
Progress in Coupon Tests of SiCf/SiC Ceramic Matrix Composites Used for Aero Engines
LIU Hu1,2, YANG Jin-hua1,2, ZHOU Yi-ran1, LYU Xiao-xu1, QI Zhe1, JIAO Jian1,2
1. National Key Laboratory of Advanced Composites, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China;
2. Aviation Key Laboratory of Science and Technology on Advanced Corrosion and Protection for Aviation Material, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
全文: PDF(3076 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 国外在航空发动机用SiCf/SiC复合材料的研发和应用方面进展迅速,这得益于其开展了大量的材料级性能测试并借此建立的材料性能数据库。本文梳理了SNECMA,NASA,GE公司典型SiCf/SiC复合材料牌号的基本物理性能和力学性能,探讨了制备工艺等因素对材料性能的影响,着重分析并讨论了复合材料的拉伸性能;同时综述了国外在该类材料使用性能方面开展的测试,主要包括高温抗氧化性、高温水/氧环境性能、疲劳及蠕变性能、抗热冲击性能以及抗外来物冲击测试等,并对材料在热、力、水、氧等不同环境因素下的损伤行为和失效机制进行了阐述。在此基础上,提出了我国在SiCf/SiC复合材料后续性能测试研究方面的建议。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘虎
杨金华
周怡然
吕晓旭
齐哲
焦健
关键词 陶瓷基复合材料材料级测试物理性能力学性能使用性能    
Abstract:The research of SiCf/SiC ceramic matrix composites (CMCs) as well as their applications in aero engines has obtained rapid development recently. This is owing to the large quantity of coupon tests performed on various properties of these materials, and the establishment of corresponding databases. Here, the physical and mechanical properties of CMCs developed by SNECMA, NASA and GE were reviewed. The influence of fabrication techniques on the properties of materials were discussed with an emphasis on tensile properties. Meanwhile, the service performances of these materials were summarized, including oxidation, water vapor/oxygen environmental resistance at high temperature, fatigue and creep behaviors, resistance to thermal shock and foreign object damage, along with the mechanism of damage and failure in environments such as heating, loading, water and oxidation. At last, some suggestions about domestic further research on performances testing for SiCf/SiC ceramic matrix composites were proposed.
Key wordsceramic matrix composite    coupon test    physical property    mechanical property    service performance
收稿日期: 2018-05-03      出版日期: 2018-11-19
中图分类号:  TB332  
基金资助: 
通讯作者: 焦健(1976-),男,高级工程师,博士,研究方向为陶瓷基复合材料,联系地址:北京市81信箱5分箱(100095),E-mail:jiaojian_2010@sina.com     E-mail: jiaojian_2010@sina.com
引用本文:   
刘虎, 杨金华, 周怡然, 吕晓旭, 齐哲, 焦健. 国外航空发动机用SiCf/SiC复合材料的材料级性能测试研究进展[J]. 材料工程, 2018, 46(11): 1-12.
LIU Hu, YANG Jin-hua, ZHOU Yi-ran, LYU Xiao-xu, QI Zhe, JIAO Jian. Progress in Coupon Tests of SiCf/SiC Ceramic Matrix Composites Used for Aero Engines. Journal of Materials Engineering, 2018, 46(11): 1-12.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000503      或      http://jme.biam.ac.cn/CN/Y2018/V46/I11/1
[1] KATOH Y, SNEAD L L, HENAGER C H, et al. Current status and recent research achievements in SiC/SiC composites[J]. Journal of Nuclear Materials, 2014, 455(1/3):387-397.
[2] 卢国锋,乔生儒,许艳. 连续纤维增强陶瓷基复合材料界面层研究进展[J]. 材料工程, 2014(11):107-112. LU G F, QIAO S R, XU Y. Progress in research on interface layer of continuous fiber reinforced ceramic matrix composites[J]. Journal of Materials and Engineering, 2014(11):107-112.
[3] DING D. Processing, properties and applications of ceramic matrix composites, SiCf/SiC:an overview[M]//Advances in Ceramic Matrix Composites. Philadelphia:Woodhead Publishing, 2014:99-116.
[4] NASLAIN R. Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors:an overview[J]. Composites Science and Technology, 2004, 64(2):155-170.
[5] 穆阳,邓佳欣,李皓,等. 填料法制备SiCf/SiC复合材料的力学性能和高温介电性能[J]. 航空材料学报, 2018, 38(3):31-39. MU Y, DENG J X, LI H, et al. Mechanical and high-temperature dielectric properties of SiCf/SiC composites with SiO2 filler[J]. Journal of Aeronautical Materials, 2018, 38(3):31-39.
[6] UDAYAKUMAR A, GANESH A S, RAJA S, et al. Effect of intermediate heat treatment on mechanical properties of SiCf/SiC composites with BN interphase prepared by ICVI[J]. Journal of the European Ceramic Society, 2011, 31(6):1145-1153.
[7] 肖鹏,徐永东,张立同. 高温陶瓷基复合材料制备工艺的研究[J]. 材料工程, 2000(2):41-44. XIAO P, XU Y D, ZHANG L T. Study of processing of high temperature ceramic matrix composites[J]. Journal of Materials and Engineering, 2000(2):41-44.
[8] LIU H T, CHENG H F, WANG J, et al. Effects of the single layer CVD SiC interphases on the mechanical properties of the SiCf/SiC composites fabricated by PIP process[J]. Ceramics International, 2010, 36(7):2033-2037.
[9] YU H J, ZHOU X G, ZHANG W, et al. Mechanical behavior of SiCf/SiC composites with alternating PyC/SiC multilayer interphases[J]. Materials & Design, 2013, 44:320-324.
[10] YIN J, LEE S H, FENG L, et al. The effects of SiC precursors on the microstructures and mechanical properties of SiCf/SiC composites prepared via polymer impregnation and pyrolysis process[J]. Ceramics International, 2015, 41(3):4145-4153.
[11] 谭僖,刘伟,曹腊梅,等. 不同纤维预制体结构对SiCf/PyC/SiBCN复合材料力学性能的影响[J]. 航空材料学报, 2017, 37(4):45-51. TAN X, LIU W, CAO L M, et al. Effect of fabric preform structure on mechanical properties of SiCf/PyC/SiBCN composites[J]. Journal of Aeronautical Materials, 2017, 37(4):45-51.
[12] LEUCHS M. Chemical vapor infiltration processes for ceramic matrix composites:manufacturing, properties, applications[M]//Ceramic Matrix Composites-Fiber Reinforced Ceramics and their Applications. Weinheim:Wiley-VCH, 2008:141-164.
[13] KOTANI M, KONAKA K, OGIHARA S. The effect on the tensile properties of PIP-processed SiC/SiC composite of a chemical vapor-infiltrated SiC layer overlaid on the pyrocarbon interface layer[J]. Composites Part A:Applied Science and Manufacturing, 2016, 87:123-130.
[14] LUO Z, ZHOU X G, YU J S. Mechanical properties of SiC/SiC composites by PIP process with a new precursor at elevated temperature[J]. Materials Science and Engineering:A, 2014, 607:155-161.
[15] CORMAN G S, LUTHRA K L. Silicon melt infiltrated ceramic composites (HiPerCompTM)[M]//Handbook of Ceramic Composites. Boston:Kluwer Academic Publishers, 2004:99-116.
[16] DICARLO J A, YUN H M, MORSCHER G N, et al. SiC/SiC composites for 1200℃ and above[M]//Handbook of Ceramic Composites. Boston:Kluwer Academic Publishers, 2004:77-98.
[17] 田仕,王为民,张帆,等. 致密陶瓷材料密度和气孔率的测试方法[J]. 理化检验(物理分册), 2011, 47(8):476-479. TIAN S, WANG W M, ZHANG F, et al. Testing method of density and porosity of dense ceramic materials[J]. PTCA Part A Phys Test,2011, 47(8):476-479.
[18] 朱海玲,陈沙鸥,李达,等.测定陶瓷材料密度及其气孔率的方法[J].理化检验(物理分册),2006, 42(6):289-291. ZHU H L, CHEN S O, LI D, et al.Measuring method for the density and the pore ratio of ceramic materials[J]. PTCA Part A Phys Test,2006, 42(6):289-291.
[19] YONATHAN P, LEE J H, YOON D H, et al. Improvement of SiCf/SiC density by slurry infiltration and tape stacking[J]. Materials Research Bulletin, 2009, 44(11):2116-2122.
[20] WANG Z, DONG S M, HE P, et al. Fabrication of carbon fiber reinforced ceramic matrix composites with improved oxidation resistance using boron as active filler[J]. Journal of the European Ceramic Society, 2010, 30(3):787-792.
[21] MORSCHER G N. Tensile creep and rupture of 2D-woven SiC/SiC composites for high temperature applications[J]. Journal of the European Ceramic Society, 2010, 30(11):2209-2221.
[22] HEIDENREICH B. Melt infiltration process[M]//Ceramic Matrix Composites-Fiber Reinforced Ceramics and their Applications. Weinheim:Wiley-VCH, 2008:113-139.
[23] 董绍明,胡建宝,张翔宇. SiC/SiC复合材料MI工艺制备技术[J]. 航空制造技术, 2014(6):35-40. DONG S M, HU J B, ZHANG X Y. Melt infiltration process for SiC/SiC composites[J]. Aeronautical Manufacturing Technology, 2014(6):35-40.
[24] 申诗典. 基于XCT技术的陶瓷基复合材料热膨胀系数预测[D]. 南京:南京航空航天大学, 2017. SHEN S D. Prediction for coefficient of thermal expansion of ceramic matrix composites based on XCT technology[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2017.
[25] 中国航空材料手册编辑委员会.中国航空材料手册第2卷[M]. 2版.北京:中国标准出版社, 2002. The Editorial Board of China Aeronautical Materials Handbook. China aeronautical materials handbook Vol 2[M]. 2nd ed.Beijing:Standards Press of China, 2002.
[26] LAMON J. Chemical vapor infiltrated SiC/SiC composites (CVI SiC/SiC)[M]//Handbook of Ceramic Composites. Boston:Kluwer Academic Publishers, 2004:55-76.
[27] 万德田,王艳萍. 极端环境下的陶瓷材料力学性能评价技术及装置[J]. 中国建材, 2014(12):104-108. WAN D T, WANG Y P. Technology and device for evaluating mechanical properties of ceramic materials in extreme environments[J]. China Building Materials, 2014(12):104-108.
[28] 樊在霞,张瑜,陈彦模. 针织物增强复合材料拉伸性能的研究进展[J]. 纺织导报, 2004(6):124-127. FAN Z X, ZHANG Y, CHEN Y M. The tensile properties of knitted fabric-reinforced composite materials[J]. China Textile Leader, 2004(6):124-127.
[29] CORMAN G, UPADHYAY R, SINHA S, et al. General electric company:selected applications of ceramics and composite materials[M]//Materials Research for Manufacturing-An Industrial Perspective of Turning Materials into New Products. Cham Switzerland:Springer International Publishing, 2016:59-91.
[30] MORSCHER G N, DICARLO J A, KISER J D, et al. Effects of fiber architecture on matrix cracking for melt-infiltrated SiC/SiC composites[J]. International Journal of Applied Ceramic Technology, 2009, 7(3):276-290.
[31] MORSCHER G N, PUJAR V V. Creep and stress-strain behavior after creep for SiC fiber reinforced, melt-infiltrated SiC matrix composites[J]. Journal of the American Ceramic Society, 2006, 89(5):1652-1658.
[32] MORSCHER G N, SINGH M, KISER J D, et al. Modeling stress-dependent matrix cracking and stress-strain behavior in 2D woven SiC fiber reinforced CVI SiC composites[J]. Composites Science and Technology, 2007, 67(6):1009-1017.
[33] MORSCHER G N, PUJAR V V. Design guidelines for in-plane mechanical properties of SiC fiber-reinforced melt-infiltrated SiC composites[J]. International Journal of Applied Ceramic Technology, 2009, 6(2):151-163.
[34] MORSCHER G N. Tensile creep of melt-infiltrated SiC/SiC composites with unbalanced Sylramic-iBN fiber architectures[J]. International Journal of Applied Ceramic Technology, 2011, 8(2):239-250.
[35] MORSCHER G N, YUN H M, DICARLO J A. In-plane cracking behavior and ultimate strength for 2D woven and braided melt-infiltrated SiC/SiC composites tensile loaded in off-axis fiber directions[J]. Journal of the American Ceramic Society, 2007, 90(10):3185-3193.
[36] NASIRI N A, PATRA N, NI N, et al. Oxidation behaviour of SiC/SiC ceramic matrix composites in air[J]. Journal of the European Ceramic Society, 2016, 36(14):3293-3302.
[37] ROY J, CHANDRA S, DAS S, et al. Oxidation behaviour of silicon carbide-a review[J]. Reviews on Advanced Materials Science, 2014, 38(1):29-39.
[38] ERVIN G. Oxidation behavior of silicon carbide[J]. Journal of the American Ceramic Society, 1958, 41(9):347-352.
[39] PULTZ W W, HERTL W. SiO2+SiC reaction at elevated temperatures part 1-kinetics and mechanism[J]. Transactions of the Faraday Society, 1966, 62:2499-2504.
[40] UNAL O, ECKEL A J, LAABS F C. The 1400℃ oxidation effect on microstructure, strength and cyclic life of SiC/SiC composites[J]. Scripta Metallurgica et Materialia, 1995, 33(6):983-988.
[41] MORSCHER G N, HURST J, BREWER D. Intermediate-temperature stress rupture of a woven Hi-Nicalon, BN-interphase, SiC-matrix composite in air[J]. Journal of the American Ceramic Society, 2000, 83(6):1441-1449.
[42] LAROCHELLE K J, MORSCHER G N. Tensile stress rupture behavior of a woven ceramic matrix composite in humid environments at intermediate temperature-part I[J]. Applied Composite Materials, 2006, 13(3):147-172.
[43] OPILA E J. Oxidation and volatilization of silica formers in water vapor[J]. Journal of the American Ceramic Society, 2003, 86(8):1238-1248.
[44] PARK D J, JUNG Y I, KIM H G, et al. Oxidation behavior of silicon carbide at 1200℃ in both air and water-vapor-rich environments[J]. Corrosion Science, 2014, 88:416-422.
[45] OPILA E J, HANN R E. Paralinear oxidation of CVD SiC in water vapor[J]. Journal of the American Ceramic Society, 1997, 80(1):197-205.
[46] TORTORELLI P F, MORE K L. Effects of high water-vapor pressure on oxidation of silicon carbide at 1200℃[J]. Journal of the American Ceramic Society, 2003, 86(8):1249-1255.
[47] NASLAIN R, GUETTE A, REBILLAT F, et al. Oxidation mechanisms and kinetics of SiC-matrix composites and their constituents[J]. Journal of Materials Science, 2004, 39(24):7303-7316.
[48] MORSCHER G N. Fiber-reinforced ceramic matrix composites for aero engines[M]//Encyclopedia of Aerospace Engineering. Hoboken, New Jersey:John Wiley & Sons Inc, 2014:1-10.
[49] MORSCHER G N. Stress-environmental effects on fiber-reinforced SiC-based composites[M]//Ceramic Matrix Composites-Materials, Modeling and Technology. Hoboken, New Jersey:John Wiley & Sons Inc, 2014:334-352.
[50] MALL S, RYBA J L. Effects of moisture on tensile stress rupture behavior of a SiC/SiC composite at elevated temperatures[J]. Composites Science and Technology, 2008, 68:274-282.
[51] OJARD G, CALOMINO A, MORSCHER G, et al. Post creep/dwell fatigue testing of MI SiC/SiC composites[M]//Mechanical Properties and Performance of Engineering Ceramics and Composites Ⅲ. Hoboken, New Jersey:John Wiley & Sons Inc,2008:135-143.
[52] OJARD G, GOWAYED Y, CHEN J, et al. Time-dependent response of MI SiC/SiC composites part 1:standard samples[M]//Mechanical Properties and Performance of Engineering Ceramics and Composites Ⅲ. Hoboken, New Jersey:John Wiley & Sons Inc, 2008:145-153.
[53] GOWAYED Y, OJARD G, CHEN J, et al. Time-dependent response of MI SiC/SiC composites part 2:samples with holes[M]//Mechanical Properties and Performance of Engineering Ceramics and CompositesⅢ. Hoboken, New Jersey:John Wiley & Sons Inc, 2008:155-162.
[54] BUNSELL A R, BERGER M H. Fine diameter ceramic fibres[J]. Journal of the European Ceramic Society, 2000, 20(13):2249-2260.
[55] YUN H M, DICARLO J A. Non-oxide (silicon carbide) fibers[M]//Handbook of Ceramic Composites. Boston:Kluwer Academic Publishers, 2004:33-52.
[56] RUGGLES-WRENN M B, CHRISTENSEN D T, CHAMBERLAIN A L, et al. Effect of frequency and environment on fatigue behavior of a CVI SiC/SiC ceramic matrix composite at 1200℃[J]. Composites Science and Technology, 2011, 71(2):190-196.
[57] RUGGLES-WRENN M, BOUCHER N, PRZYBYLA C. Fatigue of three advanced SiC/SiC ceramic matrix composites at 1200℃ in air and in steam[J]. International Journal of Applied Ceramic Technology, 2018, 15(1):3-15.
[58] MORSCHER G N, OJARD G, MILLER R, et al. Tensile creep and fatigue of Sylramic-iBN melt-infiltrated SiC matrix composites:retained properties, damage development, and failure mechanisms[J]. Composites Science and Technology, 2008, 68(15/16):3305-3313.
[59] KIM T T, MALL S, ZAWADA L P, et al. Simultaneous fatigue and combustion exposure of a SiC/SiC ceramic matrix composite[J]. Journal of Composite Materials, 2010, 44(25):2991-3016.
[60] SABELKIN V, MALL S, COOK T S, et al. Fatigue and creep behaviors of a SiC/SiC composite under combustion and laboratory environments[J]. Journal of Composite Materials, 2016, 50(16):2145-2153.
[61] BERTRAND D J, SABELKIN V, ZAWADA L, et al. Fatigue behavior of sylramic-iBN/BN/CVI SiC ceramic matrix composite in combustion environment[J]. Journal of Materials Science, 2015, 50(22):7437-7447.
[62] WANG H, SINGH R N. Thermal-shock behavior of ceramics and ceramic composites[J]. International Materials Reviews, 1994, 39(6):228-244.
[63] CHAWLA N, CHAWLA K K, KOOPMAN M, et al. Thermal-shock behavior of a Nicalon-fiber-reinforced hybrid glass-ceramic composite[J]. Composites Science and Technology, 2001, 61(13):1923-1930.
[64] LEE S P, LEE J K, SON I S, et al. Thermal shock properties of 2D-SiCf/SiC composites[J]. Fusion Engineering and Design, 2012, 87(7/8):1244-1248.
[65] SALEKEEN S, AMOAKO J N, MAHFUZ H, et al. Mechanical property degradation of a Nicalon fiber reinforced SiNC ceramic matrix composite under thermal shock loading[J]. Composite Structures, 2007, 78(4):477-485.
[66] KAGAWA Y. Thermal shock damage in a two-dimensional SiC/SiC composite reinforced with woven SiC fibers[J]. Composites Science and Technology, 1997, 57(5):607-611.
[67] SINGH R N, WANG H Y. Thermal-shock behavior of fiber-reinforced ceramic-matrix composites[J]. Composites Engineering, 1995, 5(10/11):1287-1297.
[68] WANG H Y, SINGH R N, LOWDEN R A. Thermal shock behavior of two-dimensional woven fiber-reinforced ceramic composites[J]. Journal of the American Ceramic Society, 1996, 79(7):1783-1792.
[69] WANG H, SINGH R N, LOWDEN R A. Thermal shock behaviour of unidirectional, 0°/90°, and 2-D woven fibre-reinforced CVI SiC matrix composites[J]. Journal of Materials Science, 1997, 32(12):3305-3313.
[70] UDAYAKUMAR A, STALIN M, ABHAYALAKSHMI M B, et al. Effect of thermal cycling of SiCf/SiC composites on their mechanical properties[J]. Journal of Nuclear Materials, 2013, 442(1/3):384-389.
[71] CHOI S R. Foreign object damage phenomenon by steel ball projectiles in a SiC/SiC ceramic matrix composite at ambient and elevated temperatures[J]. Journal of the American Ceramic Society, 2008, 91(9):2963-2968.
[72] CHOI S R, KOWALIK R W. Interlaminar crack growth resistances of various ceramic matrix composites in mode Ⅰ and mode Ⅱ loading[J]. Journal of Engineering for Gas Turbines and Power, 2008, 130(3).doi:10.1115/1.2800349
[73] OGI K, OKABE T, TAKAHASHI M, et al. Experimental characterization of high-speed impact damage behavior in a three-dimensionally woven SiC/SiC composite[J]. Composites Part A, 2010, 41(4):489-498.
[74] YASHIRO S, OGI K, OSHITA M. High-velocity impact damage behavior of plain-woven SiC/SiC composites after thermal loading[J]. Composites Part B, 2012, 43(3):1353-1362.
[75] BHATT R T, CHOI S R, COSGRIFF L M, et al. Impact resistance of uncoated SiC/SiC composites[J]. Materials Science and Engineering:A, 2008, 476(1/2):20-28.
[76] HERB V, MARTIN E, COUÉGNAT G. Damage analysis of thin 3D-woven SiC/SiC composite under low velocity impact loading[J]. Composites Part A, 2012, 43(2):247-253.
[1] 杨旭东, 安涛, 邹田春, 巩天琛. 湿热环境对碳纤维增强树脂基复合材料力学性能的影响及其损伤机理[J]. 材料工程, 2019, 47(7): 84-91.
[2] 王聃, 陶德华, 黄秀玲, 华子恺. 聚甲基丙稀酸羟乙酯甘油凝胶仿软骨材料的制备与性能[J]. 材料工程, 2019, 47(7): 71-75.
[3] 刘文祎, 徐聪, 刘茂文, 肖文龙, 马朝利. 稀土元素Gd对Al-Si-Mg铸造合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(6): 129-135.
[4] 王飞云, 金建军, 江志华, 王晓震, 胡春文. 热处理温度对新型马氏体时效不锈钢微观组织和性能的影响[J]. 材料工程, 2019, 47(6): 152-160.
[5] 陈海龙, 杨学锋, 王守仁, 鹿重阳, 吴元博. 改性酚醛树脂陶瓷摩擦材料的摩擦磨损性能[J]. 材料工程, 2019, 47(6): 108-113.
[6] 闫钊鸣, 张治民, 杜玥, 张冠世, 任璐英. 均匀化处理对Mg-13Gd-3.5Y-2Zn-0.5Zr镁合金组织和力学性能的影响[J]. 材料工程, 2019, 47(5): 93-99.
[7] 薛子明, 雷卫宁, 王云强, 钱海峰, 李奇林. 超临界条件下脉冲占空比对石墨烯复合镀层微观结构和性能的影响[J]. 材料工程, 2019, 47(5): 53-62.
[8] 李惠, 肖文龙, 张艺镡, 马朝利. 多重结构Ti-B4C/Al2024复合材料的组织和力学性能[J]. 材料工程, 2019, 47(4): 152-159.
[9] 崔岩, 项俊帆, 曹雷刚, 杨越, 刘园. 碳化硅颗粒表面吸附质对铝基复合材料制备及力学性能的影响[J]. 材料工程, 2019, 47(4): 160-166.
[10] 李亚锋, 礼嵩明, 黑艳伟, 邢丽英, 陈祥宝. 太阳辐照对芳纶纤维及其复合材料性能的影响[J]. 材料工程, 2019, 47(4): 39-46.
[11] 赵双赞, 燕绍九, 陈翔, 洪起虎, 李秀辉, 戴圣龙. 石墨烯纳米片增强铝基复合材料的动态力学行为[J]. 材料工程, 2019, 47(3): 23-29.
[12] 李灿, 陈文琳, 雷远. 微量Sr及均匀化工艺对Al-Mg-Si-Cu-Mn变形铝合金铸态组织与性能的影响[J]. 材料工程, 2019, 47(2): 90-98.
[13] 李秀辉, 燕绍九, 洪起虎, 赵双赞, 陈翔. 石墨烯添加量对铜基复合材料性能的影响[J]. 材料工程, 2019, 47(1): 11-17.
[14] 孟祥龙, 衣明东, 肖光春, 陈照强, 许崇海. 石墨烯纳米片增韧Al2O3基纳米复合陶瓷刀具材料[J]. 材料工程, 2019, 47(1): 25-31.
[15] 陈刚, 王璐, 杨静, 李强, 吕品, 马胜国. Al0.1CoCrFeNi高熵合金的力学性能和变形机理[J]. 材料工程, 2019, 47(1): 106-111.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn