Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (2): 11-21    DOI: 10.11868/j.issn.1001-4381.2019.000038
  综述 本期目录 | 过刊浏览 | 高级检索 |
硫醇保护的银簇制备及其荧光检测应用的进展
毕明刚1,2, 张纪梅1,2, 郝帅帅2, 谢博尧2
1. 天津工业大学 化学与化工学院, 天津 300387;
2 天津工业大学 中空纤维膜材料与膜过程国家重点实验室, 天津 300387
Development of preparation of thiol-protected silver clusters and fluorescence detection applications
BI Ming-gang1,2, ZHANG Ji-mei1,2, HAO Shuai-shuai2, XIE Bo-yao2
1. School of Chemistry and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, China;
2. State Key Laboratory of Hollow Fiber Membrane Materials and Process, Tianjin Polytechnic University, Tianjin 300387, China
全文: PDF(1773 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 贵金属纳米簇具有独特的电子结构和荧光特性,可以作为荧光探针,广泛应用于生物标记、离子检测等领域。本文综述了硫醇保护的银簇的制备方法,包括自下而上法和自上而下法,重点从优化反应的还原动力过程,选择优良的硫醇配体,改变体系的pH值,严格控制反应过程中的刻蚀时间和反应温度等方面,介绍了关于硫醇保护的银簇制备的研究现状,对进一步研究提供了思路。同时,基于硫醇保护的银簇优异的荧光性质,介绍了在检测Cu2+,Hg2+,I-等离子以及半胱氨酸等小分子方面的研究进展。最后指出,提高金属纳米簇的荧光量子产率和安全性,深入研究金属纳米簇与重金属离子、生物大分子的反应机理,探究高纯度、多样性的合金簇或过渡金属纳米簇的合成方法,实现高效率的基于硫醇保护的银簇荧光传感材料的制备是未来研究中的热门方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
毕明刚
张纪梅
郝帅帅
谢博尧
关键词 银簇纳米粒子制备荧光检测    
Abstract:Precious metal nanoclusters have unique electronic structure and fluorescent properties, and can be used as fluorescent probes in a wide range of applications such as biomarkers and ion detection. This paper reviews the preparation methods of thiol-protected silver clusters, including bottom-up and top-down methods, focusing on optimizing the reduction process of the reaction, selecting excellent thiol ligands, changing the pH values of the system, and strictly controlling. The research status of the preparation of thiol-protected silver clusters was introduced in terms of etching time and reaction temperature during the reaction, and ideas and suggestions for further research were provided. At the same time, based on the excellent fluorescence properties of thiol-protected silver clusters, the research progress in the detection of small molecules such as Cu2+, Hg2+, I- and cysteine was introduced. Finally, it was pointed out that the fluorescence quantum yield and safety of metal nanoclusters are improved, and the reaction mechanism of metal nanoclusters with heavy metal ions and biomacromolecules is studied in depth, and the synthesis methods of high purity and diversity alloy clusters or transition metal nanoclusters are explored. The preparation of fluorescent sensing materials for the realization of highly efficient thiol-protected silver clusters is a hot trend in future research.
Key wordssilver cluster    nanoparticle    preparation    fluorescence detection
收稿日期: 2019-01-13      出版日期: 2020-03-03
中图分类号:  O657.3  
  TB333  
通讯作者: 张纪梅(1958-),女,教授,博士,从事聚氧乙烯、聚氧丙烯共聚醚研究和金属纳米簇、量子点等研究,联系地址:天津市西青区天津工业大学(300387),E-mail:zhangjimei6d311@163.com     E-mail: zhangjimei6d311@163.com
引用本文:   
毕明刚, 张纪梅, 郝帅帅, 谢博尧. 硫醇保护的银簇制备及其荧光检测应用的进展[J]. 材料工程, 2020, 48(2): 11-21.
BI Ming-gang, ZHANG Ji-mei, HAO Shuai-shuai, XIE Bo-yao. Development of preparation of thiol-protected silver clusters and fluorescence detection applications. Journal of Materials Engineering, 2020, 48(2): 11-21.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000038      或      http://jme.biam.ac.cn/CN/Y2020/V48/I2/11
[1] DANIEL M C, ASTRUC D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology [J]. Chemical Reviews, 2004, 104(1): 293-346.
[2] JAIN P K, LEE K S, EL-SAYED I H, et al. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine [J]. Journal of Physical Chemistry B, 2006, 110(14): 7238-7248.
[3] KELLY K L, CORONADO E, ZHAO L L, et al. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment [J]. Journal of Physical Chemistry B, 2003, 107(3): 668-677.
[4] DREADEN E C, ALKILANY A M, HUANG X, et al. The golden age: gold nanoparticles for biomedicine [J]. Chemical Society Reviews, 2012, 41(7): 2740-2779.
[5] 李雨晴,陈曦,杨雪,等.纳米发光银簇的合成与应用研究进展[J]. 分析试验室, 2018, 37(9): 1096-1101. LI Y Q,CHEN X,YANG X,et al.Research progress in the synthesis and application of nano luminescent silver clusters [J]. Chinese Journal of Analysis Laboratory,2018, 37(9): 1096-1101.
[6] 刘颖,陈春英.纳米生物效应与安全性研究展望[J]. 科学通报, 2018, 63(35): 3825-3842. LIU Y,CHEN C Y. Prospect of nano biological effects and safety research [J]. Chinese Science Bulletin, 2018, 63(35): 3825-3842.
[7] HEAVEN M W, DASS A, WHITE P S, et al. Crystal structure of the gold nanoparticle [N(C8H17)4][ Au25(SCH2CH2Ph)18] [J]. Journal of the American Chemical Society, 2008, 130(12): 3754-3755.
[8] ZENG C, QIAN H, LI T, et al. Total structure and electronic properties of the gold nanocrystal Au36(SR)24 [J]. Angewandte Chemie-International Edition, 2012, 51(52): 13114-13118.
[9] QIAN H, ECKENHOFF W T, ZHU Y, et al. Total structure determination of thiolate-protected Au38 nanoparticles [J]. Journal of the American Chemical Society, 2010, 132(24): 8280-8281.
[10] QIAN H, ZHU M, WU Z, et al. Quantum sized gold nanoclusters with atomic precision [J]. Accounts of Chemical Research, 2012, 45(9): 1470-1479.
[11] AKOLA J, WALTER M, WHETTEN R L, et al. On the structure of thiolate-protected Au25 [J]. Journal of the American Chemical Society, 2008, 130(12): 3756-3757.
[12] YUAN X, ZHANG B, LUO Z, et al. Balancing the rate of cluster growth and etching for gram-scale synthesis of thiolate-protected Au25 nanoclusters with atomic precision [J]. Angewandte Chemie-International Edition, 2014, 53(18): 4623-4627.
[13] DOU X, YUAN X, YAO Q, et al. Facile synthesis of water-soluble Au25-XAgX nanoclusters protected by mono- and bi-thiolate ligands [J]. Chemical Communications, 2014, 50(56): 7459-7462.
[14] YAO Q, YU Y, YUAN X, et al. Two-phase synthesis of small thiolate-protected Au15 and Au18 nanoclusters [J]. Small, 2013, 9(16): 2696-2701.
[15] YU Y, CHEN X, YAO Q, et al. Scalable and precise synthesis of thiolated Au10-12, Au15, Au18, and Au25 nanoclusters via pH controlled CO reduction [J]. Chemistry of Materials, 2013, 25(6): 946-952.
[16] MURRAY R W. Nanoelectrochemistry: metal nanoparticles, nanoelectrodes, and nanopores [J]. Chemical Reviews, 2008, 108(7): 2688-2720.
[17] CHEN S W, INGRAM R S, HOSTETLER M J, et al. Gold nanoelectrodes of varied size: transition to molecule-like charging [J]. Science, 1998, 280(5372): 2098-2101.
[18] ANTONELLO S, ARRIGONI G, DAINESE T, et al. Electron transfer through 3d mono layers on Au25 clusters [J]. ACS Nano, 2014, 8(3): 2788-2795.
[19] VARNAVSKI O, RAMAKRISHNA G, KIM J, et al. Critical size for the observation of quantum confinement in optically excited gold clusters [J]. Journal of the American Chemical Society, 2010, 132(1): 16-17.
[20] RAMAKRISHNA G, VARNAVSKI O, KIM J, et al. Quantum-sized gold clusters as efficient two-photon absorbers [J]. Journal of the American Chemical Society, 2008, 130(15): 5032-5033.
[21] NEGISHI Y, TSUNOYAMA H, SUZUKI M, et al. X-ray magnetic circular dichroism of size-selected, thiolated gold clusters [J]. Journal of the American Chemical Society, 2006, 128(37): 12034-12035.
[22] ZHU M, AIKENS C M, HENDRICH M P, et al. Reversible switching of magnetism in thiolate-protected Au25 superatoms [J]. Journal of the American Chemical Society, 2009, 131(7): 2490-2492.
[23] ANTONELLO S, PERERA N V, RUZZI M, et al. Interplay of charge state, lability, and magnetism in the molecule-like Au25(SR)18 cluster [J]. Journal of the American Chemical Society, 2013, 135(41): 15585-15594.
[24] ZENG C, LI T, DAS A, et al. Chiral structure of thiolate-protected 28-gold-atom nanocluster determined by X-ray crystallography [J]. Journal of the American Chemical Society, 2013, 135(27): 10011-10013.
[25] ZHU M, QIAN H, MENG X, et al. Chiral Au25 nanospheres and nanorods: synthesis and insight into the origin of chirality [J]. Nano Letters, 2011, 11(9): 3963-3969.
[26] KNOPPE S, WONG O A, MALOLA S, et al. Chiral phase transfer and enantioenrichment of thiolate-protected Au102 clusters [J]. Journal of the American Chemical Society, 2014, 136(11): 4129-4132.
[27] YU Y, LUO Z, CHEVRIER D M, et al. Identification of a highly luminescent Au22(SG)18 nanocluster [J]. Journal of the American Chemical Society, 2014, 136(4): 1246-1249.
[28] GUIDEZ E B, AIKENS C M. Theoretical analysis of the optical excitation spectra of silver and gold nanowires [J]. Nanoscale, 2012, 4(14): 4190-4198.
[29] KIM J S, KUK E, YU K N, et al. Antimicrobial effects of silver nanoparticles [J]. Nanomedicine-Nanotechnology Biology and Medicine, 2007, 3(1): 95-101.
[30] YUAN X, SETYAWATI M I, LEONG D T, et al. Ultrasmall Ag+-rich nanoclusters as highly efficient nanoreservoirs for bacterial killing [J]. Nano Research, 2014, 7(3): 301-307.
[31] 孙欢欢,卿太平,步鸿昌,等.荧光金属纳米簇的合成及其在生物医学中的应用研究进展[J]. 分析测试学报, 2018, 37(10): 1119-1129. SUN H H,QING T P,BU H C, et al. Synthesis of fluorescent metal nanoclusters and their biomedical applications [J]. Journal of Instrumental Analysis, 2018, 37(10): 1119-1129.
[32] XU H, SUSLICK K S. Water-soluble fluorescent silver nanoclusters [J]. Advanced Materials, 2010, 22(10): 1078-1082.
[33] WU Z, LANNI E, CHEN W, et al. High yield, large scale synthesis of thiolate-protected Ag7 clusters [J]. Journal of the American Chemical Society, 2009, 131(46): 16672-16674.
[34] RAO T U B, NATARAJU B, PRADEEP T. Ag9 quantum cluster through a solid-state route [J]. Journal of the American Chemical Society, 2010, 132(46): 16304-16307.
[35] BRANHAM M R, DOUGLAS A D, MILLS A J, et al. Arylthiolate-protected silver quantum dots [J]. Langmuir, 2006, 22(26): 11376-11383.
[36] NEGISHI Y, ARAI R, NIIHORI Y, et al. Isolation and structural characterization of magic silver clusters protected by 4-(tert-butyl)benzyl mercaptan [J]. Chemical Communications, 2011, 47(20): 5693-5695.
[37] YUAN X, YAO Q, YU Y, et al. Traveling through the desalting column spontaneously transforms thiolated ag nanoclusters from non luminescent to highly luminescent [J]. Journal of Physical Chemistry Letters, 2013, 4(11): 1811-1815.
[38] YUAN X, SETYAWATI M I, TAN A S, et al. Highly luminescent silver nanoclusters with tunable emissions: cyclic reduction-decomposition synthesis and antimicrobial properties [J]. NPG Asia Materials, 2013, 5(39):1-8
[39] YUAN X, LUO Z, ZHANG Q, et al. Synthesis of highly fluorescent metal (Ag, Au, Pt, and Cu) nanoclusters by electrostatically induced reversible phase transfer [J]. ACS Nano, 2011, 5(11): 8800-8808.
[40] YUAN X, YEOW T J, ZHANG Q, et al. Highly luminescent Ag+ nanoclusters for Hg2+ ion detection [J]. Nanoscale, 2012, 4(6): 1968-1971.
[41] GUO W, YUAN J, WANG E. Oligonucleotide-stabilized Ag nanoclusters as novel fluorescence probes for the highly selective and sensitive detection of the Hg2+ ion [J]. Chemical Communications, 2009,(23): 3395-3397.
[42] ADHIKARI B, BANERJEE A. Facile synthesis of water-soluble fluorescent silver nanoclusters and Hg(Ⅱ) sensing [J]. Chemistry of Materials, 2010, 22(15): 4364-4371.
[43] MUHAMMED M A H, ALDEEK F, PALUI G, et al. Growth of in situ functionalized luminescent silver nanoclusters by direct reduction and size focusing [J]. ACS Nano, 2012, 6(10): 8950-8961.
[44] ABDULHALIM L G, ASHRAF S, KATSIEV K, et al. A scalable synthesis of highly stable and water dispersible Ag44(SR)30 nanoclusters [J]. Journal of Materials Chemistry: A, 2013, 1(35): 10148-10154.
[45] DESIREDDY A, CONN B E, GUO J, et al. Ultrastable silver nanoparticles [J]. Nature, 2013, 501(7467): 399-402.
[46] CHAKRABORTY I, UDAYABHASKARARAO T, PRADEEP T. High temperature nucleation and growth of glutathione protected similar to Ag75 clusters [J]. Chemical Communications, 2012, 48(54): 6788-6790.
[47] ZHOU T, RONG M, CAI Z, et al. Sonochemical synthesis of highly fluorescent glutathione-stabilized Ag nanoclusters and S2- sensing [J]. Nanoscale, 2012, 4(14): 4103-4106.
[48] SANTIAGO G B, BLANCO M C, ARTURO L M. Single step electrochemical synthesis of hydrophilic/hydrophobic Ag5 and Ag6 blue luminescent clusters [J]. Nanoscale, 2012, 4(24): 7632-7635.
[49] CHAKRABORTY I, UDAYABHASKARARAO T, DEEPESH G K, et al. Sunlight mediated synthesis and antibacterial properties of monolayer protected silver clusters [J]. Journal of Materials Chemistry: B, 2013, 1(33): 4059-4064.
[50] RAO T U B, PRADEEP T. Luminescent Ag7 and Ag8 clusters by interfacial synthesis [J]. Angewandte Chemie-International Edition, 2010, 49(23): 3925-3929.
[51] DHANALAKSHMI L, UDAYABHASKARARAO T, PRAD-EEP T. Conversion of double layer charge-stabilized Ag@citrate colloids to thiol passivated luminescent quantum clusters [J]. Chemical Communications, 2012, 48(6): 859-861.
[52] LE G X, SPIES C, DAUM N, et al. Highly fluorescent silver nanoclusters stabilized by glutathione: a promising fluorescent label for bioimaging [J]. Nano Research, 2012, 5(6): 379-387.
[53] YU Y, LUO Z, YU Y, et al. Observation of cluster size growth in co-directed synthesis of Au25(SR)18 nanoclusters [J]. ACS Nano, 2012, 6(9): 7920-7927.
[54] LUO Z, NACHAMMAI V, ZHANG B, et al. Toward understanding the growth mechanism: tracing all stable intermediate species from reduction of Au(Ⅰ)-thiolate complexes to evolution of Au25 nanoclusters [J]. Journal of the American Chemical Society, 2014, 136(30): 10577-10580.
[55] FU X, LOU T, CHEN Z, et al. "Turn-on" fluorescence detection of lead ions based on accelerated leaching of gold nanoparticles on the surface of graphene [J]. ACS Applied Materials & Interfaces, 2012, 4(2): 1080-1086.
[56] GUO C, IRUDAYARAJ J. Fluorescent Ag clusters via a protein-directed approach as a Hg(Ⅱ) ion sensor [J]. Analytical Chemistry, 2011, 83(8): 2883-2889.
[57] LETELIER M E, LEPE A M, FAUNDEZ M, et al. Possible mechanisms underlying copper-induced damage in biological membranes leading to cellular toxicity [J]. Chemico-Biological Interactions, 2005, 151(2): 71-82.
[58] MATHUR R, BALARAM V, BABU S S. Determination of mercury in geological samples by cold vapour atomic absorption spectrometric technique [J]. Indian Journal of Chemistry Section A-Inorganic Bio-Inorganic Physical Theoretical & Analytical Chemistry, 2005, 44(8): 1619-1624.
[59] WU J, BOYLE E A. Low blank preconcentration technique for the determination of lead, copper, and cadmium in small-volume seawater samples by isotope dilution ICPMS [J]. Analytical Chemistry, 1997, 69(13): 2464-2470.
[60] ZHU Z, SU Y, LI J, et al. Highly sensitive electrochemical sensor for mercury(Ⅱ) ions by using a mercury-specific oligonucleotide probe and gold nanoparticle-based amplification [J]. Analytical Chemistry, 2009, 81(18): 7660-7666.
[61] LIU D, QU W, CHEN W, et al. Highly sensitive, colorimetric detection of mercury(Ⅱ) in aqueous media by quaternary ammonium group-capped gold nanoparticles at room temperature [J]. Analytical Chemistry, 2010, 82(23): 9606-9610.
[62] SUN Z, ZHANG N, SI Y, et al. High-throughput colorimetric assays for mercury(Ⅱ) in blood and wastewater based on the mercury-stimulated catalytic activity of small silver nanoparticles in a temperature-switchable gelatin matrix [J]. Chemical Communications, 2014, 50(65): 9196-9199.
[63] KLEIN G, KAUFMANN D, SCHURCH S, et al. A fluorescent metal sensor based on macrocyclic chelation [J]. Chemical Communications, 2001, (6): 561-562.
[64] BOIOCCHI M, FABBRIZZI L, LICCHELLI M, et al. A two-channel molecular dosimeter for the optical detection of copper(Ⅱ) [J]. Chemical Communications, 2003(15): 1812-1813.
[65] KONESWARAN M, NARAYANASWAMY R. Mercaptoacetic acid capped CdS quantum dots as fluorescence single shot probe for mercury(Ⅱ) [J]. Sensors and Actuators: B, 2009, 139(1): 91-96.
[66] CHAN Y-H, CHEN J, LIU Q, et al. Ultrasensitive copper(Ⅱ) detection using plasmon-enhanced and photo-brightened luminescence of CdSe quantum dots [J]. Analytical Chemistry, 2010, 82(9): 3671-3678.
[67] SU Y T, LAN G Y, CHEN W Y, et al. Detection of copper ions through recovery of the fluorescence of DNA-templated copper/silver nanoclusters in the presence of mercaptopropionic acid [J]. Analytical Chemistry, 2010, 82(20): 8566-8572.
[68] XIE J, ZHENG Y, YING J Y. Highly selective and ultrasensitive detection of Hg2+ based on fluorescence quenching of Au nanoclusters by Hg2+-Au+ interactions [J]. Chemical Communications, 2010, 46(6): 961-963.
[69] LIU H, ZHANG X, WU X, et al. Rapid sonochemical synthesis of highly luminescent non-toxic Au NCs and Au@AgNCs and Cu (Ⅱ) sensing [J]. Chemical Communications, 2011, 47(14): 4237-4239.
[70] BERTORELLE F, HAMOUDA R, RAYANE D, et al. Synthesis, characterization and optical properties of low nuclearity liganded silver clusters: Ag31(SG)19 and Ag15(SG)11 [J]. Nanoscale, 2013, 5(12): 5637-5643.
[71] UDAYABHASKARARAO T, BOOTHARAJU M S, PRAD-EEP T. Thiolate-protected Ag32 clusters: mass spectral studies of composition and insights into the Ag-thiolate structure from NMR [J]. Nanoscale, 2013, 5(19): 9404-9411.
[72] HARKNESS K M, TANG Y, DASS A, et al. Ag44(SR)4-30: a silver-thiolate superatom complex [J]. Nanoscale, 2012, 4(14): 4269-4274.
[73] MATHEW A, NATARAJAN G, LEHTOVAARA L, et al. Supramolecular functionalization and concomitant enhancement in properties of Au25 clusters [J]. ACS Nano, 2014, 8(1): 139-152.
[74] CHAKRABORTY I, GOVINDARAJAN A, ERUSAPPAN J, et al. The superstable 25 kDa monolayer protected silver nanoparticle: measurements and interpretation as an icosahedral Ag152(SCH2CH2Ph)60 cluster [J]. Nano Letters, 2012, 12(11): 5861-5866.
[75] BAKSI A, BOOTHARAJU M S, CHEN X, et al. Ag11(SG)7: a new cluster identified by mass spectrometry and optical spectroscopy [J]. Journal of Physical Chemistry: C, 2014, 118(37): 21722-21729.
[76] ZHANG N, SI Y, SUN Z, et al. Rapid, selective, and ultrasensitive fluorimetric analysis of mercury and copper levels in blood using bimetallic gold-silver nanoclusters with "silver effect"-enhanced red fluorescence [J]. Analytical Chemistry, 2014, 86(23): 11714-11721.
[77] DING W, GUAN L, HAN J, et al. Fluorescence chemosensing of water-soluble Ag14 nanoclusters for lysozyme and Hg2+ ions [J]. Sensors and Actuators B-Chemical, 2017, 250: 364-371.
[78] AZIZI F, HEDAYATI M, RAHMANI M, et al. Reappraisal of the risk of iodine-induced hyperthyroidism: an epidemiological population survey [J]. Journal of Endocrinological Investigation, 2005, 28(1): 23-29.
[79] CHOPRA R, KAUR P, SINGH K. A probe with aggregation induced emission characteristics for screening of iodide [J]. Dalton Transactions, 2015, 44(37): 16233-16237.
[80] WANG M H, HUANG Z P, LIU J W, et al. Iodide analysis by ion chromatography on a new stationary phase of polystyrene-divinylbenzene agglomerated with polymerized-epichlorohydrin-dimethylamine [J]. Chinese Chemical Letters, 2015, 26(8): 1026-1030.
[81] SUN Z, LI S, JIANG Y, et al. Silver nanoclusters with specific ion recognition modulated by ligand passivation toward fluorimetric and colorimetric copper analysis and biological imaging [J]. Scientific Reports, 2016, 6(1): 20553-20561.
[82] KANG X, CHEN S, JIN S, et al. Heteroatom effects on the optical and electrochemical properties of Ag25(SR)18 and its dopants [J]. Chemelectrochem, 2016, 3(8): 1261-1265.
[83] SONG X R, GOSWAMI N, YANG H H, et al. Functionalization of metal nanoclusters for biomedical applications [J]. Analyst, 2016, 141(11): 3126-3140.
[84] LI X G, ZHANG F, GAO Y, et al. Facile synthesis of red emitting 3-aminophenylboronic acid functionalized copper nanoclusters for rapid, selective and highly sensitive detection of glycoproteins [J]. Biosensors & Bioelectronics, 2016, 86: 270-276.
[85] GHORAI A, MONDAL J, CHOWDHURY S, et al. Solvent-dependent fluorescent-colorimetric probe for dual monitoring of Al3+ and Cu2+ in aqueous solution: an application to bio-imaging [J]. Dalton Transactions, 2016, 45(28): 11540-11553.
[86] FENG L, SUN Z, LIU H, et al. Silver nanoclusters with enhanced fluorescence and specific ion recognition capability triggered by alcohol solvents: a highly selective fluorimetric strategy for detecting iodide ions in urine [J]. Chemical Communications, 2017, 53(68): 9466-9469.
[87] HALDIMANN M, ZIMMERLI B, ALS C, et al. Direct determination of urinary iodine by inductively coupled plasma mass spectrometry using isotope dilution with iodine-129[J]. Clinical Chemistry, 1998, 44(4): 817-824.
[88] WEERAPANA E, WANG C, SIMON G M, et al. Quantitative reactivity profiling predicts functional cysteines in proteomes [J]. Nature, 2010, 468(7325): 790-795.
[89] REDDIE K G, CARROLL K S. Expanding the functional diversity of proteins through cysteine oxidation [J]. Current Opinion in Chemical Biology, 2008, 12(6): 746-754.
[90] JIN W, WANG Y. Determination of cysteine by capillary zone electrophoresis with end-column amperometric detection at a gold/mercury amalgam microelectrode without deoxygenation [J]. Journal of chromatography: A, 1997, 769(2): 307-314.
[91] CHWATKO G, BALD E. Determination of cysteine in human plasma by high-performance liquid chromatography and ultraviolet detection after pre-column derivatization with 2-chloro-1-methylpyridinium iodide [J]. Talanta, 2000, 52(3): 509-515.
[92] YUAN X, TAY Y, DOU X, et al. Glutathione-protected silver nanoclusters as cysteine-selective fluorometric and colorimetric probe [J]. Analytical Chemistry, 2013, 85(3): 1913-1919.
[93] CHEN Z, LU D, CAI Z, et al. Bovine serum albumin-confined silver nanoclusters as fluorometric probe for detection of biothiols [J]. Luminescence, 2014, 29(7): 722-727.
[1] 张波波, 张文娟, 杜雪岩, 王有良. 铁基磁性纳米材料吸附废水中重金属离子研究进展[J]. 材料工程, 2020, 48(7): 93-102.
[2] 王霞, 王辉, 侯丽, 蒋欢, 周雯洁. 超疏水防腐蚀涂层的研究进展[J]. 材料工程, 2020, 48(6): 73-81.
[3] 王子明, 王东星, 陆姗姗, 王鑫, 董星龙. 镍基Ni-Ag复合纳米粒子直流电弧等离子体法制备及其烧结电学性能[J]. 材料工程, 2020, 48(3): 92-97.
[4] 陈振, 张增志, 丛中卉, 王立宁, 吴浩平. 开孔型聚合物发泡材料的研究及应用进展[J]. 材料工程, 2020, 48(3): 1-9.
[5] 温敬运, 邱晓宇, 李明飞, 彭锋, 边静, 孙润仓. 半纤维素基水凝胶制备及应用研究进展[J]. 材料工程, 2020, 48(2): 1-10.
[6] 王晓辉, 罗海文. 飞机起落架用超高强度不锈钢的研究及应用进展[J]. 材料工程, 2019, 47(9): 1-12.
[7] 桑冀蒙, 李学平, 赵瑾, 侯信, 原续波. P(AA-co-MPC)修饰超顺磁性Fe3O4纳米粒子的制备与表征[J]. 材料工程, 2019, 47(8): 82-89.
[8] 张志斌, 尉小凤, 王海涛, 史雪婷, 冯利邦. 金属基超疏水表面的制备及性能研究进展[J]. 材料工程, 2019, 47(5): 26-33.
[9] 韩栋, 张宝林, 苏礼超, 韩贵华, 汪晟. 不同粒径超顺磁性氧化铁纳米粒子的合成及其在交变磁场中的磁热效应[J]. 材料工程, 2019, 47(4): 84-90.
[10] 王倩倩, 郑俊生, 裴冯来, 戴宁宁, 郑剑平. 质子交换膜燃料电池膜电极的结构优化[J]. 材料工程, 2019, 47(4): 1-14.
[11] 余煜玺, 夏范森, 黄奇凡. 石墨烯改性PDC-SiCNO陶瓷的制备及其介电性能[J]. 材料工程, 2019, 47(3): 8-14.
[12] 马鹏飞, 王鑫, 李栋辉, 游峰, 江学良, 姚楚. 聚合物共混物增容技术及发展[J]. 材料工程, 2019, 47(2): 26-33.
[13] 张飒, 王建江, 赵芳, 刘嘉玮. 电纺Co掺杂碳纳米纤维的制备及其吸波性能[J]. 材料工程, 2019, 47(12): 118-123.
[14] 张丹丹, 沈洪雷, 曹霞, 叶煜松, 张啸, 叶历, 王梦秋. 石墨烯增强金属基航空复合材料研究进展[J]. 材料工程, 2019, 47(1): 1-10.
[15] 徐祥, 杨明, 梁益龙, 张世伟, 龚乾江. 响应面法对一种新型摩擦材料的性能优化及其磨损机理[J]. 材料工程, 2018, 46(9): 101-108.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn