Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (7): 71-75    DOI: 10.11868/j.issn.1001-4381.2019.000101
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
聚甲基丙稀酸羟乙酯甘油凝胶仿软骨材料的制备与性能
王聃, 陶德华, 黄秀玲, 华子恺
上海大学 机电工程与自动化学院, 上海 200072
Preparation and properties of poly(hydroxyethyl methacrylate) glycerol gel as biomimetic cartilage replacement material
WANG Dan, TAO De-hua, HUANG Xiu-ling, HUA Zi-kai
School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, China
全文: PDF(5643 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 为了使人体关节软骨损伤后得到修复,采用热聚合的方法制备了一种新型人工仿软骨材料。在水浴保温和引发剂条件下,采用甲基丙稀酸羟乙酯(CH2=CCH3COOCH2CH2OH,HEMA)和医用甘油(C3H8O3)聚合成一种新型凝胶,并对其分别进行了表面形貌观察和猪软骨硬度的对比,以及抗压性、弹性等力学性能测试。使用FTIR红外光谱对其作分析表征,结果表明:凝胶主体仍然是聚甲基丙稀酸羟乙酯(PHEMA),甘油以凝胶态存在;凝胶硬度随甘油比例增加而下降,但凝胶表面粗糙度却增加;当HEMA与甘油质量比例为1∶1~1∶3时,凝胶的硬度较为接近猪软骨;在比例为1∶1和1∶2的条件下,表面光滑。4种比例下的凝胶都具有良好的抗压性和弹性,当质量比为1∶1时抗压性能和综合性能最好。实验结果表明PHEMA与甘油的凝胶聚合物如果作为人工仿软骨材料,具有力学性能良好的优点,将可能提供给临床实验作进一步考察。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王聃
陶德华
黄秀玲
华子恺
关键词 聚甲基丙稀酸羟乙酯甘油凝胶人工软骨力学性能    
Abstract:According to the material research that human articular cartilage is expected to be repaired after injury, a new artificial cartilage-like material was prepared by thermal polymerization in this experiment. Under water bath insulation and initiator conditions, hydroxyethyl methacrylate(CH2 CCH3COOCH2CH2OH,HEMA) and medical glycerol(C3H8O3) were polymerized into a new gel. And the surface morphology was compared with that of porcine cartilage, and the mechanical properties such as compressive strength and elasticity were tested. By analyzing and characterizing with FTIR spectra, the host of gel is still PHEMA, and glycerol exists in gel phase. The hardness of gel decreases with the increase of glycerol ratio, while the surface roughness of gel increases. When the mass ratio of HEMA to glycerol is 1:1-1:3, the hardness of the gel is close to that of pig cartilage, and the surface is smooth under the conditions of 1:1 and 1:2. Gels of four mass ratios have good compressive strength and elasticity. When the mass ratio is 1:1, the compressive properties and comprehensive properties are the best. The experimental results indicate that PHEMA and glycerol gel polymers have good mechanical properties as artificial cartilage materials, they may provide further investigation for clinical trials.
Key wordspoly(hydroxyethyl methacrylate)    glycerol    gel    artificial cartilage    mechanical property
收稿日期: 2019-01-28      出版日期: 2019-07-19
中图分类号:  R684  
通讯作者: 华子恺(1983-),男,博士,副教授,研究方向为骨科植入物,联系地址:上海市宝山区上大路99号上海大学(200072),zikai_hua@shu.edu.cn     E-mail: zikai_hua@shu.edu.cn
引用本文:   
王聃, 陶德华, 黄秀玲, 华子恺. 聚甲基丙稀酸羟乙酯甘油凝胶仿软骨材料的制备与性能[J]. 材料工程, 2019, 47(7): 71-75.
WANG Dan, TAO De-hua, HUANG Xiu-ling, HUA Zi-kai. Preparation and properties of poly(hydroxyethyl methacrylate) glycerol gel as biomimetic cartilage replacement material. Journal of Materials Engineering, 2019, 47(7): 71-75.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000101      或      http://jme.biam.ac.cn/CN/Y2019/V47/I7/71
[1] JOHNSTONE B, ALINI M, CUCCHIARINI M, et al. Tissue engineering for articular cartilage repair-the state of the art[J]. European Cells & Materials, 2013, 25(4):248-267.
[2] MITSUNORI K, MASASHI F, YOSUKE I, et al. Extra-arti-cular debridement of hip joint for management of anterior hip pain[J]. Arthroscopy Techniques, 2018, 7(6):e651-e655.
[3] ATILLA H A, LUO T D, STUBBS A J. Arthroscopic micro-fracture of hip chondral lesions[J]. Arthroscopy Techniques, 2017, 6(6):e2295-e2299.
[4] STONE A V, CHRISTIAN D R, REDONDO M L, et al. Osteo-chondral allograft transplantation and osteochondral autograft transfer[J]. Operative Techniques in Sports Medicine, 2018, 26(3):183-188.
[5] NUKAVARAPU S P, DORCEMUS D L. Osteochondral tissue engineering:current strategies and challenges[J]. Biotechnology Advances, 2013, 31(5):706-721.
[6] LIU Y, ZHOU G, CAO Y. Recent progress in cartilage tissue engineering-our experience and future directions[J]. Engineering, 2017, 3(1):28-35.
[7] TURNBULL G, CLARKE J, PICARD F, et al. 3D bioactive composite scaffolds for bone tissue engineering[J]. Bioactive Materials, 2018, 3(3):278-314.
[8] CHUANG E Y, CHIANG C W, WONG P C, et al. Hydrogels for the application of articular cartilage tissue engineering:a rev-iew of hydrogels[J]. Advances in Materials Science and Enginee-ring, 2018, 2018:1-13.
[9] ARMIENTO A R, STODDART M J, ALINI M, et al. Biom-aterials for articular cartilage tissue engineering:learning from biology.[J]. Acta Biomaterialia, 2018, 65:1-20.
[10] BERMEJO-VELASCO D, DOU W, HEERSCHAP A, et al. Injectable hyaluronic acid hydrogels with the capacity for mag-netic resonance imaging[J]. Carbohydrate Polymers, 2018, 197:641-648.
[11] PARK H, LEE H J, AN H, et al. Alginate hydrogels modified with low molecular weight hyaluronate for cartilage regeneration[J]. Carbohydrate Polymers, 2017, 162:100-107.
[12] SHI D, XU X, YE Y, et al. Photo-cross-linked scaffold with kar-togenin-encapsulated nanoparticles for cartilage regeneration[J]. ACS Nano, 2016, 10:1292-1299.
[13] 尹合勇, 孙振, 李盼,等. 微载体/水凝胶复合支架修复大鼠膝关节骨软骨缺损[J]. 中国矫形外科杂志, 2016, 24(16):1492-1497. YIN H Y, SUN Z, LI P, et al. Microcarrier/hydrogel com-posite scaffold for repair of articular cartilage defect in rat[J]. Orthopedic Journal of China, 2016, 24(16):1492-1497.
[14] YARIMITSU S, SASAKI S, MURAKAMI T, et al. Evaluati-on of lubrication properties of hydrogel artificial cartilage mate-rials for joint prosthesis[J]. Biosurface and Biotribology, 2016, 2(1):40-47.
[15] BAVARESCO V P, ZAVAGLIA C A C, REIS M C, et al. Study on the tribological properties of PHEMA hydrogels for use in artificial articular cartilage[J]. Wear, 2008, 265(3/4):269-277.
[16] KOBAYASHI M, CHANG Y S, OKA M. A two year in vivo study of polyvinyl alcohol-hydrogel (PVA-H) artificial meniscus[J]. Biomaterials, 2005, 26(16):3243-3248.
[17] BOSTAN L, TRUNFIO-SFARGHIU A M, VERESTIUC L, et al. Mechanical and tribological properties of poly(hydroxyethyl methacrylate) hydrogels as articular cartilage substitutes[J]. Tribology International, 2012, 46(1):215-224.
[18] 崔晓彤, 刘金龙, 张德坤,等. 不同接触尺度下PVA/HA复合水凝胶的滑动摩擦行为[J]. 材料工程, 2016, 44(5):59-64. CUI X T, LIU J L, ZHANG D K, et al. Sliding friction beh-avior of PVA/HA composite hydrogels under different contac-ting scales[J]. Journal of Materials Engineering, 2016, 44(5):59-64.
[19] 刘东, 赵孔银, 宋欢语,等. 硅酸钙-海藻酸钙复合水凝胶膜的制备及表征[J]. 复合材料学报, 2017, 34(11):2401-2406. LIU D, ZHAO K Y, SONG H Y, et al. Preparation and characterization of calcium silicate-calcium alginate composite hydrogel film[J]. Acta Materiae Compositae Sinica, 2017, 34(11):2401-2406.
[20] LUO Z, DENG X, HU H, et al. Preparation and properties of PHEMA hydrogel material[J]. Rare Metal Materials and Engineering, 2016, 45(Suppl 1):427-430.
[21] PAULA V A, ANDREIA F R P, SILVA D, et al. Sur-face modification of an intraocular lens material by plasma-assisted grafting with 2-hydroxyethyl methacrylate (HEMA), for controlled release of moxifloxacin[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 120:52-62.
[22] PASSOS M F, DIAS D R C, BASTOS G N T, et al. PHEMA hydrogels:synthesis, kinetics and in vitro tests[J]. Journal of Thermal Analysis and Calorimetry, 2016, 125(1):361-368.
[23] HERMANSYAH H, WIJANARKO A, DIANURSANTI D, et al. Kinetic model for triglyceride hydrolysis using lipase[J]. Makara Journal of Technology, 2010, 11(1):30-35.
[24] FOX A J S, ASHEESH B, RODEO S A. The basic science of articular cartilage:structure, composition, and function[J]. Sports Health, 2009, 1(6):461-468.
[1] 张世杰, 王汝敏, 刘宁, 廖英强, 程勇. 纺丝工艺对T800碳纤维及其复合材料性能的影响[J]. 材料工程, 2019, 47(8): 118-124.
[2] 欧秋仁, 嵇培军, 肖军, 武玲, 王璐. 国产T800碳纤维用氰酸酯树脂开发及其复合材料性能[J]. 材料工程, 2019, 47(8): 125-131.
[3] 刘冠旗, 王春旭, 刘少尊, 厉勇, 谭成文, 刘志超. 新型高密度合金的组织与性能[J]. 材料工程, 2019, 47(8): 154-160.
[4] 杨旭东, 安涛, 邹田春, 巩天琛. 湿热环境对碳纤维增强树脂基复合材料力学性能的影响及其损伤机理[J]. 材料工程, 2019, 47(7): 84-91.
[5] 张平生, 辛勇, 曹传亮, 艾凡荣. 壳聚糖/羟基磷灰石表面修饰聚己内酯多孔骨支架的制备及性能[J]. 材料工程, 2019, 47(7): 64-70.
[6] 陈海龙, 杨学锋, 王守仁, 鹿重阳, 吴元博. 改性酚醛树脂陶瓷摩擦材料的摩擦磨损性能[J]. 材料工程, 2019, 47(6): 108-113.
[7] 刘文祎, 徐聪, 刘茂文, 肖文龙, 马朝利. 稀土元素Gd对Al-Si-Mg铸造合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(6): 129-135.
[8] 王飞云, 金建军, 江志华, 王晓震, 胡春文. 热处理温度对新型马氏体时效不锈钢微观组织和性能的影响[J]. 材料工程, 2019, 47(6): 152-160.
[9] 闫钊鸣, 张治民, 杜玥, 张冠世, 任璐英. 均匀化处理对Mg-13Gd-3.5Y-2Zn-0.5Zr镁合金组织和力学性能的影响[J]. 材料工程, 2019, 47(5): 93-99.
[10] 薛子明, 雷卫宁, 王云强, 钱海峰, 李奇林. 超临界条件下脉冲占空比对石墨烯复合镀层微观结构和性能的影响[J]. 材料工程, 2019, 47(5): 53-62.
[11] 毕松, 汤进, 王鑫, 侯根良, 李军, 刘朝辉, 苏勋家. 共沉淀过程中镍锌添加比例对两步法制备的Ni0.5Zn0.5Fe2O4吸波性能的影响[J]. 材料工程, 2019, 47(4): 91-96.
[12] 李惠, 肖文龙, 张艺镡, 马朝利. 多重结构Ti-B4C/Al2024复合材料的组织和力学性能[J]. 材料工程, 2019, 47(4): 152-159.
[13] 刘明, 严继康, 杨钢, 姜贵民, 杜景红, 甘国友, 易健宏. 铜掺杂纳米二氧化钛颗粒的相变研究[J]. 材料工程, 2019, 47(4): 105-112.
[14] 崔岩, 项俊帆, 曹雷刚, 杨越, 刘园. 碳化硅颗粒表面吸附质对铝基复合材料制备及力学性能的影响[J]. 材料工程, 2019, 47(4): 160-166.
[15] 李亚锋, 礼嵩明, 黑艳伟, 邢丽英, 陈祥宝. 太阳辐照对芳纶纤维及其复合材料性能的影响[J]. 材料工程, 2019, 47(4): 39-46.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn