Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (6): 125-131    DOI: 10.11868/j.issn.1001-4381.2019.000486
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
熔体微分电纺回收PP无纺布纳米纤维膜制备及吸油性能
谢超1, 邢健1, 丁玉梅1,2, 王循1, 杨卫民1,2, 李好义1,2
1. 北京化工大学 机电工程学院, 北京 100029;
2. 北京化工大学 有机-无机复合材料国家重点实验室, 北京 100029
Preparation and oil absorption properties of PP non-woven nanofiber membranes by melt differential electrospinning
XIE Chao1, XING Jian1, DING Yu-mei1,2, WANG Xun1, YANG Wei-min1,2, LI Hao-yi1,2
1. College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China;
2. State Key Laboratory of Organic-inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
全文: PDF(2747 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 回收再利用是最有效的处理废旧高分子材料的方法,既能减少高分子材料对自然环境的危害,又能达到节约成本,变废为宝的目的。借助自制的熔体微分电纺装置,以回收聚丙烯(PP)无纺布为原材料,分别对酸处理后的回收PP无纺布粉料以及添加质量分数10%的不同增塑剂(硬脂酸钠、乙酰基柠檬酸三丁酯(ATBC)、己二酸二辛酯(DOA))的共混物料进行纺丝,在300℃下制备纳米纤维膜。探究回收PP无纺布纺丝的最佳降解时间以及添加不同增塑剂种类对电纺回收PP无纺布纳米纤维形貌、吸油性能及重复使用性能的影响。研究表明,加入增塑剂ATBC效果最佳。当纺丝电压40 kV,纺丝距离70 mm,纺丝温度300℃,ATBC质量分数为10%时制备的纤维直径达到最细为1.13 μm。纤维膜吸油倍率为115.4 g/g,保油倍率为70.3g/g,分别为初始市售PP无纺布的4倍和3倍,且具有良好的重复使用性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谢超
邢健
丁玉梅
王循
杨卫民
李好义
关键词 熔体静电纺丝回收再利用污染纳米材料吸附    
Abstract:Recycling is the most effective way to dispose of waste polymer materials. It can not only reduce the harm of polymer materials to the natural environment, but also achieve the purpose of saving cost and turning waste into treasure. A self-made melt differential electrospinning device was used to recover the degraded polypropylene (PP) non-woven fabric as a raw material, and the special powder for recycling and degrading PP non-woven fabric after acid treatment and adding different plasticizers with a mass fraction of 10%. A blend of materials of sodium stearate, acetyl tributyl citrate (ATBC), and dioctyl adipate (DOA) was spun, and a nanofiber membrane was prepared at 300 ℃. The optimum degradation time of PP nonwoven fabric spinning and the effect of adding different plasticizers on the morphology, oil absorption performance and reusability of PP-degraded non-woven fabric nanofibers were investigated. Studies have shown that the addition of plasticizer ATBC works best. When the spinning voltage is 40 kV, the spinning distance is 70 mm, the spinning temperature is 300 ℃, and the ATBC mass fraction is 10%, the fiber diameter is as fine as 1.13 μm. The fiber membrane oil absorption ratio is 115.4 g/g, and the oil retention ratio is 70.3 g/g, which are 4 times and 3 times that of the initially commercially available PP nonwoven fabric, and has good reusability.
Key wordsmelt electrospinning    recycling    pollution    nanomaterial    membrane    adsorption
收稿日期: 2019-05-23      出版日期: 2020-06-15
中图分类号:  TQ340.9  
通讯作者: 李好义(1987-),男,讲师,博士,研究方向为高分子材料先进制造,联系地址:北京市朝阳区北三环东路15号北京化工大学机电工程学院(100029), lhy@mail.buct.edu.cn     E-mail: lhy@mail.buct.edu.cn
引用本文:   
谢超, 邢健, 丁玉梅, 王循, 杨卫民, 李好义. 熔体微分电纺回收PP无纺布纳米纤维膜制备及吸油性能[J]. 材料工程, 2020, 48(6): 125-131.
XIE Chao, XING Jian, DING Yu-mei, WANG Xun, YANG Wei-min, LI Hao-yi. Preparation and oil absorption properties of PP non-woven nanofiber membranes by melt differential electrospinning. Journal of Materials Engineering, 2020, 48(6): 125-131.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000486      或      http://jme.biam.ac.cn/CN/Y2020/V48/I6/125
[1] 弓风莲,张霞,朱喜礼. 医用无纺布及卫生巾产品可生物降解性实验研究[J]. 河南科学, 2002(4):65-68. GONG F L, ZHANG X, ZHU X L. Experimental research on biodegradability of medical nonwovens and sanitary napkin products [J]. Henan Science, 2002 (4): 65-68.
[2] SHARMA V P, AGARWAL V, UMAR S, et al. Polymer composites sustainability: environmental perspective, future trends and minimization of health risk[C]//International Conference on Environmental Science and Development. Adrar: ICESD,2011:259-261.
[3] LU J J, HAMOUDA H. Current status of fiber waste recycling and its future[J]. Advanced Materials Research, 2014, 878:122-131.
[4] CONTAT-RODRIGO L, RIBES-GREUS A. Characterization of polymer soil burial degradation by thermal analysis and mechanical spectroscopy[J]. Macromolecular Symposia, 1999, 144(1):153-163.
[5] JAIN S, CHATTOPADHYAY S, JACKERAY R, et al. Surface modification of polyacrylonitrile fiber for immobilization of antibodies and detection of analyte[J]. Analytica Chimica Acta, 2009, 654(2):103-110.
[6] 石素宇,王利娜,赵康,等. 再生PET纤维/PP复合材料的结构及力学性能[J]. 复合材料学报, 2017,34(7):1511-1516. SHI S Y,WANG L N,ZHAO K, et al. Structure and mechanical property of recycled PET fiber/PP composite[J]. Acta Materiae Compositae Sinica, 2017,34(7):1511-1516.
[7] 阎星辰,汤相宇,张晓东,等. 废旧织物回收制备纳米纤维素[J]. 纸和造纸, 2019, 38(2):18-20. YAN X C, TANG X Y, ZHANG X D, et al. Preparation of nanocellulose from waste fabric recycling [J]. Paper and Paper Maker, 2019, 38(2): 18-20.
[8] 王志钢. 回收纤维增强木塑复合材料的制备和性能研究[D]. 上海:东华大学,2015. WANG Z G. Preparation and properties of recycled fiber reinforced wood-plastic composites [D]. Shanghai: Donghua University, 2015.
[9] 丁彬,斯阳,俞建勇. 静电纺纳米纤维材料在环境领域中的应用研究[J]. 中国材料进展,2013,32(8):492-502. DING B,SI Y,YU J Y.Progress in the research of electrospun nanofibers for environmental applications[J]. Materials China,2013,32(8):492-502.
[10] 陈俊,张代军,张天骄,等. 溶液静电纺丝制备热塑性聚酰亚胺超细纤维无纺布[J]. 材料工程, 2018,46(2):41-49. CHEN J,ZHANG D J,ZHANG T J, et al. Preparation of thermoplastic polyimide ultrafine fiber nonwovens by electrospinning[J]. Journal of Materials Engineering, 2018,46(2):41-49.
[11] 曹胜光,胡炳环,刘海清. 静电纺制备纳米孔结构聚乳酸(PLLA)超细纤维[J]. 高分子学报, 2010(10):1193-1198. CAO S G,HU B H,LIU H Q. Fabrication of nano-porous structured polylactide(PLLA) fibers through electrospinning[J]. Acta Polymerica Sinica,2010(10):1193-1198.
[12] ZHU H, QIU S, JIANG W, et al. Evaluation of electrospun polyvinyl chloride/polystyrene fibers as sorbent materials for oil spill cleanup[J]. Environmental Science & Technology, 2011, 45(10):4527-4531.
[13] WU J, WANG N, WANG L, et al. Electrospun porous structure fibrous film with high oil adsorption capacity[J]. ACS Applied Materials & Interfaces, 2012, 4(6):3207-3212.
[14] LIN J, TIAN F, SHANG Y, et al. Co-axial electrospun polystyrene/polyurethane fibres for oil collection from water surface[J]. Nanoscale, 2013, 5(7):2745-2755.
[15] 杨卫民,李好义,吴卫逢,等.熔体静电纺丝技术研究进展[J]. 北京化工大学学报(自然科学版),2014,41(4):1-13. YANG W M,LI H Y,WU W F,et al. Research progress of melt electrospinning technology[J]. Journal of Beijing University of Chemical Technology (Natural Science),2014,41(4):1-13.
[16] 黄丽,吕亚非,战仁波,等. 聚丙烯/纳米SiO2复合材料的结晶行为研究[J]. 航空材料学报, 2006, 26(3): 168-171. HUANG L, LU Y F, ZHAN R B, et al. Crystallization behavior of polypropylene/nano-SiO2 composites[J].Journal of Aeronautical Materials, 2006, 26(3): 168-171.
[17] 吴春蕾,章明秋,容敏智. 低填充SiO2/聚丙烯纳米复合材料的拉伸特性[J]. 材料工程, 2001(5):30-33. WU C L, ZHANG M Q,RONG M Z. Tensile characteristics of low filler loaded SiO2 /PP nanocomposites[J]. Journal of Materials Engineering,2001(5):30-33.
[18] CHEN L I, FAN H, LIE L U, et al. Research on toughening modification of copolymerized polypropylene using polyolefin elastomers[J]. Journal of Chemical Engineering of Chinese Universities, 2009, 23(5):813-818.
[1] 许文龙, 陈爽, 张津红, 刘会娥, 朱佳梦, 刁帅, 于安然. 羧甲基纤维素-石墨烯复合气凝胶的制备及吸附研究[J]. 材料工程, 2020, 48(9): 77-85.
[2] 马开心, 刘琪, 白甜, 路子杰, 于黎楠, 莫琛, 赵孔银, 刘亚. 聚酯无纺布支撑CaAlg/CaSiO3@SiO2的制备及其对Pb2+的吸附[J]. 材料工程, 2020, 48(9): 86-92.
[3] 董伟, 孟瑶, 许富民, 韩阳, 王延洋, 陈楷. 基于单分散逐液滴雾化法制备锡合金微细球形金属粉末[J]. 材料工程, 2020, 48(9): 124-131.
[4] 钱伟, 何大平, 李宝文. 石墨烯基电磁屏蔽材料的研究进展[J]. 材料工程, 2020, 48(7): 14-23.
[5] 任宝娜, 皮浩弘, 谷英姝, 王锐, 张秀芹, 吴晶. Janus膜的制备及其应用研究进展[J]. 材料工程, 2020, 48(7): 72-80.
[6] 张波波, 张文娟, 杜雪岩, 王有良. 铁基磁性纳米材料吸附废水中重金属离子研究进展[J]. 材料工程, 2020, 48(7): 93-102.
[7] 赵晓燕, 黄晨, 张帅, 汪称意. 壳聚糖/聚乙烯醇过滤膜的制备及其性能表征[J]. 材料工程, 2020, 48(7): 176-183.
[8] 刘峰峰, 李玉雄, 隋展鹏, 蔡勇, 张永红, 蒋春萍. 非晶AlBN介质薄膜的制备及相关特性研究[J]. 材料工程, 2020, 48(6): 112-117.
[9] 张小广, 邓慧宇, 陈庆春, 邦宇, 晏乐安, 那兵. 5-异氰酸酯异肽酰氯/ZnO/超支化聚酰胺纳滤膜的制备及性能[J]. 材料工程, 2020, 48(5): 91-99.
[10] 巩桂芬, 徐阿文, 邹明贵, 邢韵, 辛浩. EVOH-SO3Li/P(VDF-HFP)/HAP锂离子电池隔膜的制备及电化学性能[J]. 材料工程, 2020, 48(5): 75-82.
[11] 党阿磊, 方成林, 赵曌, 赵廷凯, 李铁虎, 李昊. 新型二维纳米材料MXene的制备及在储能领域的应用进展[J]. 材料工程, 2020, 48(4): 1-14.
[12] 吴怡芳, 崇少坤, 柳永宁, 郭生武, 白利锋, 张翠萍, 李成山. 碳纳米材料构建高性能锂离子和锂硫电池研究进展[J]. 材料工程, 2020, 48(4): 25-35.
[13] 邓培淼, 宁洪龙, 谢伟广, 刘贤哲, 邓宇熹, 姚日晖, 彭俊彪. 氧化亚锡薄膜晶体管的研究进展[J]. 材料工程, 2020, 48(4): 83-88.
[14] 杨伸勇, 张丛春, 杨卓青, 李红芳, 姚锦元, 黄漫国, 汪红, 丁桂甫. 高温ITO薄膜应变计制备及压阻性能[J]. 材料工程, 2020, 48(4): 145-150.
[15] 李淑文, 赵孔银, 陈康, 李金刚, 赵磊, 王晓磊, 魏俊富. TiO2共混丝朊接枝聚丙烯腈过滤膜制备及性能研究[J]. 材料工程, 2020, 48(3): 47-52.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn