Please wait a minute...
 
2222材料工程  2020, Vol. 48 Issue (6): 125-131    DOI: 10.11868/j.issn.1001-4381.2019.000486
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
熔体微分电纺回收PP无纺布纳米纤维膜制备及吸油性能
谢超1, 邢健1, 丁玉梅1,2, 王循1, 杨卫民1,2, 李好义1,2,*()
1 北京化工大学 机电工程学院, 北京 100029
2 北京化工大学 有机-无机复合材料国家重点实验室, 北京 100029
Preparation and oil absorption properties of PP non-woven nanofiber membranes by melt differential electrospinning
Chao XIE1, Jian XING1, Yu-mei DING1,2, Xun WANG1, Wei-min YANG1,2, Hao-yi LI1,2,*()
1 College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
2 State Key Laboratory of Organic-inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
全文: PDF(2747 KB)   HTML ( 1 )  
输出: BibTeX | EndNote (RIS)      
摘要 

回收再利用是最有效的处理废旧高分子材料的方法,既能减少高分子材料对自然环境的危害,又能达到节约成本,变废为宝的目的。借助自制的熔体微分电纺装置,以回收聚丙烯(PP)无纺布为原材料,分别对酸处理后的回收PP无纺布粉料以及添加质量分数10%的不同增塑剂(硬脂酸钠、乙酰基柠檬酸三丁酯(ATBC)、己二酸二辛酯(DOA))的共混物料进行纺丝,在300℃下制备纳米纤维膜。探究回收PP无纺布纺丝的最佳降解时间以及添加不同增塑剂种类对电纺回收PP无纺布纳米纤维形貌、吸油性能及重复使用性能的影响。研究表明,加入增塑剂ATBC效果最佳。当纺丝电压40 kV,纺丝距离70 mm,纺丝温度300℃,ATBC质量分数为10%时制备的纤维直径达到最细为1.13 μm。纤维膜吸油倍率为115.4 g/g,保油倍率为70.3g/g,分别为初始市售PP无纺布的4倍和3倍,且具有良好的重复使用性能。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谢超
邢健
丁玉梅
王循
杨卫民
李好义
关键词 熔体静电纺丝回收再利用污染纳米材料吸附    
Abstract

Recycling is the most effective way to dispose of waste polymer materials. It can not only reduce the harm of polymer materials to the natural environment, but also achieve the purpose of saving cost and turning waste into treasure. A self-made melt differential electrospinning device was used to recover the degraded polypropylene (PP) non-woven fabric as a raw material, and the special powder for recycling and degrading PP non-woven fabric after acid treatment and adding different plasticizers with a mass fraction of 10%. A blend of materials of sodium stearate, acetyl tributyl citrate (ATBC), and dioctyl adipate (DOA) was spun, and a nanofiber membrane was prepared at 300 ℃. The optimum degradation time of PP nonwoven fabric spinning and the effect of adding different plasticizers on the morphology, oil absorption performance and reusability of PP-degraded non-woven fabric nanofibers were investigated. Studies have shown that the addition of plasticizer ATBC works best. When the spinning voltage is 40 kV, the spinning distance is 70 mm, the spinning temperature is 300 ℃, and the ATBC mass fraction is 10%, the fiber diameter is as fine as 1.13 μm. The fiber membrane oil absorption ratio is 115.4 g/g, and the oil retention ratio is 70.3 g/g, which are 4 times and 3 times that of the initially commercially available PP nonwoven fabric, and has good reusability.

Key wordsmelt electrospinning    recycling    pollution    nanomaterial    membrane    adsorption
收稿日期: 2019-05-23      出版日期: 2020-06-15
中图分类号:  TQ340.9  
基金资助:国家重点研发计划(2016YFB0302000)
通讯作者: 李好义     E-mail: lhy@mail.buct.edu.cn
作者简介: 李好义(1987-), 男, 讲师, 博士, 研究方向为高分子材料先进制造, 联系地址:北京市朝阳区北三环东路15号北京化工大学机电工程学院(100029), E-mail:lhy@mail.buct.edu.cn
引用本文:   
谢超, 邢健, 丁玉梅, 王循, 杨卫民, 李好义. 熔体微分电纺回收PP无纺布纳米纤维膜制备及吸油性能[J]. 材料工程, 2020, 48(6): 125-131.
Chao XIE, Jian XING, Yu-mei DING, Xun WANG, Wei-min YANG, Hao-yi LI. Preparation and oil absorption properties of PP non-woven nanofiber membranes by melt differential electrospinning. Journal of Materials Engineering, 2020, 48(6): 125-131.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000486      或      http://jme.biam.ac.cn/CN/Y2020/V48/I6/125
Fig.1  熔体微分静电纺丝装置
Fig.2  初始PP无纺布电镜图
Fig.3  不同降解时间的回收PP无纺布粉料TGA曲线
Fig.4  不同降解时间回收PP无纺布粉料XRD曲线
Fig.5  酸处理前后回收PP无纺布粉料TGA曲线
Fig.6  不同增塑剂种类纤维电镜图
(a)PP;(b)PP+10%硬脂酸钠;(c)PP+10%ATBC;(d)PP+10%DOA
Fig.7  纤维直径及纤维直径分布对比图
Fig.8  添加不同增塑剂共混料DSC曲线
Fig.9  纤维膜对不同油的吸油倍率(a)和保油倍率(b)
Fig.10  不同纤维膜重复使用性能
1 弓风莲, 张霞, 朱喜礼. 医用无纺布及卫生巾产品可生物降解性实验研究[J]. 河南科学, 2002, (4): 65- 68.
1 GONG F L , ZHANG X , ZHU X L . Experimental research on biodegradability of medical nonwovens and sanitary napkin products[J]. Henan Science, 2002, (4): 65- 68.
2 SHARMA V P, AGARWAL V, UMAR S, et al. Polymer composites sustainability: environmental perspective, future trends and minimization of health risk[C]//International Conference on Environmental Science and Development. Adrar: ICESD, 2011: 259-261.
3 LU J J , HAMOUDA H . Current status of fiber waste recycling and its future[J]. Advanced Materials Research, 2014, 878, 122- 131.
4 CONTAT-RODRIGO L , RIBES-GREUS A . Characterization of polymer soil burial degradation by thermal analysis and mechanical spectroscopy[J]. Macromolecular Symposia, 1999, 144 (1): 153- 163.
5 JAIN S , CHATTOPADHYAY S , JACKERAY R , et al. Surface modification of polyacrylonitrile fiber for immobilization of antibodies and detection of analyte[J]. Analytica Chimica Acta, 2009, 654 (2): 103- 110.
6 石素宇, 王利娜, 赵康, 等. 再生PET纤维/PP复合材料的结构及力学性能[J]. 复合材料学报, 2017, 34 (7): 1511- 1516.
6 SHI S Y , WANG L N , ZHAO K , et al. Structure and mechanical property of recycled PET fiber/PP composite[J]. Acta Materiae Compositae Sinica, 2017, 34 (7): 1511- 1516.
7 阎星辰, 汤相宇, 张晓东, 等. 废旧织物回收制备纳米纤维素[J]. 纸和造纸, 2019, 38 (2): 18- 20.
7 YAN X C , TANG X Y , ZHANG X D , et al. Preparation of nanocellulose from waste fabric recycling[J]. Paper and Paper Maker, 2019, 38 (2): 18- 20.
8 王志钢.回收纤维增强木塑复合材料的制备和性能研究[D].上海: 东华大学, 2015.
8 WANG Z G. Preparation and properties of recycled fiber reinforced wood-plastic composites [D]. Shanghai: Donghua University, 2015.
9 丁彬, 斯阳, 俞建勇. 静电纺纳米纤维材料在环境领域中的应用研究[J]. 中国材料进展, 2013, 32 (8): 492- 502.
9 DING B , SI Y , YU J Y . Progress in the research of electrospun nanofibers for environmental applications[J]. Materials China, 2013, 32 (8): 492- 502.
10 陈俊, 张代军, 张天骄, 等. 溶液静电纺丝制备热塑性聚酰亚胺超细纤维无纺布[J]. 材料工程, 2018, 46 (2): 41- 49.
10 CHEN J , ZHANG D J , ZHANG T J , et al. Preparation of thermoplastic polyimide ultrafine fiber nonwovens by electrospinning[J]. Journal of Materials Engineering, 2018, 46 (2): 41- 49.
11 曹胜光, 胡炳环, 刘海清. 静电纺制备纳米孔结构聚乳酸(PLLA)超细纤维[J]. 高分子学报, 2010, (10): 1193- 1198.
11 CAO S G , HU B H , LIU H Q . Fabrication of nano-porous structured polylactide(PLLA) fibers through electrospinning[J]. Acta Polymerica Sinica, 2010, (10): 1193- 1198.
12 ZHU H , QIU S , JIANG W , et al. Evaluation of electrospun polyvinyl chloride/polystyrene fibers as sorbent materials for oil spill cleanup[J]. Environmental Science & Technology, 2011, 45 (10): 4527- 4531.
13 WU J , WANG N , WANG L , et al. Electrospun porous structure fibrous film with high oil adsorption capacity[J]. ACS Applied Materials & Interfaces, 2012, 4 (6): 3207- 3212.
14 LIN J , TIAN F , SHANG Y , et al. Co-axial electrospun polystyrene/polyurethane fibres for oil collection from water surface[J]. Nanoscale, 2013, 5 (7): 2745- 2755.
15 杨卫民, 李好义, 吴卫逢, 等. 熔体静电纺丝技术研究进展[J]. 北京化工大学学报(自然科学版), 2014, 41 (4): 1- 13.
15 YANG W M , LI H Y , WU W F , et al. Research progress of melt electrospinning technology[J]. Journal of Beijing University of Chemical Technology (Natural Science), 2014, 41 (4): 1- 13.
16 黄丽, 吕亚非, 战仁波, 等. 聚丙烯/纳米SiO2复合材料的结晶行为研究[J]. 航空材料学报, 2006, 26 (3): 168- 171.
16 HUANG L , LU Y F , ZHAN R B , et al. Crystallization behavior of polypropylene/nano-SiO2 composites[J]. Journal of Aeronautical Materials, 2006, 26 (3): 168- 171.
17 吴春蕾, 章明秋, 容敏智. 低填充SiO2/聚丙烯纳米复合材料的拉伸特性[J]. 材料工程, 2001, (5): 30- 33.
17 WU C L , ZHANG M Q , RONG M Z . Tensile characteristics of low filler loaded SiO2 /PP nanocomposites[J]. Journal of Materials Engineering, 2001, (5): 30- 33.
18 CHEN L I , FAN H , LIE L U , et al. Research on toughening modification of copolymerized polypropylene using polyolefin elastomers[J]. Journal of Chemical Engineering of Chinese Universities, 2009, 23 (5): 813- 818.
[1] 张林琳, 顾学林, 向笑笑, 刘会娥, 陈爽. 石墨烯-羧甲基纤维素复合气凝胶的制备及吸油性能评价[J]. 材料工程, 2022, 50(9): 43-51.
[2] 孟倩, 李东阳, 杨江仁, 刘天增. 310S耐热钢的高温氧化行为[J]. 材料工程, 2022, 50(9): 137-149.
[3] 周银, 乔畅, 邹家栋, 郭洪锍, 王树奇. 多层石墨烯对钛合金摩擦学性能的影响[J]. 材料工程, 2022, 50(8): 107-114.
[4] 欧阳果仔, 李新冬, 张鑫, 李海柯, 李浪, 李文豪, 钟招煌. 聚醚酰亚胺耐溶剂超滤膜的制备及性能研究[J]. 材料工程, 2022, 50(8): 160-168.
[5] 陈爽, 韩雪艳, 安帅帅, 王勇杰, 李仕华. 基体表面粗糙度对MoS2/Ti薄膜摩擦磨损性能的影响[J]. 材料工程, 2022, 50(8): 169-177.
[6] 张铭泰, 余少彬, 李希成, 冯萃敏, 石梦童, 汪长征, 王强. 新型复合纳米材料用于光催化降解染料废水的研究进展[J]. 材料工程, 2022, 50(7): 59-68.
[7] 潘廷仙, 郑秋燕, 李茂辉, 同鑫, 胡长刚, 田娟. 酸处理对FeN/ZIF-8催化剂氧还原反应催化性能的影响[J]. 材料工程, 2022, 50(5): 122-129.
[8] 张晟, 曾俊彦, 尚方方, 曾祥琼. 电子皮肤热点核心材料及其在生命健康领域中的应用研究进展[J]. 材料工程, 2022, 50(2): 23-37.
[9] 吴鹏, 陈诚, 赵雪伶, 林东海. 纳米材料模拟酶应用进展[J]. 材料工程, 2022, 50(2): 62-72.
[10] 朱陈杰, 陈海权, 于有海. 静电喷雾法/原位洗脱法结合制备电致变色薄膜[J]. 材料工程, 2022, 50(1): 109-116.
[11] 张文娟, 寇苗. 二维材料MXene在水处理领域的应用[J]. 材料工程, 2021, 49(9): 14-26.
[12] 肖伟, 杨占旭, 乔庆东. 石墨电极表面聚丙烯腈纳米纤维膜的制备及性能[J]. 材料工程, 2021, 49(9): 60-68.
[13] 辜宁霞, 荆婉如, 宁磊, 吕芳洁, 宋立新, 熊杰. 钙钛矿太阳能电池用Ag/ZrO2/C柔性纳米纤维膜电极[J]. 材料工程, 2021, 49(9): 79-86.
[14] 杨泛明, 黎丽君, 肖浪, 廖敏, 张可意, 谭伟石, 贺国文. 聚醚P123和四乙烯五胺双功能化Fe-Zr的CO2吸附性能[J]. 材料工程, 2021, 49(9): 158-166.
[15] 李红, 韩祎, 曹健, MARIUSZBober, JACEKSenkara. 高熵合金在钎焊和表面工程领域的应用研究进展[J]. 材料工程, 2021, 49(8): 1-10.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn