Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (10): 28-38    DOI: 10.11868/j.issn.1001-4381.2019.000515
  综述 本期目录 | 过刊浏览 | 高级检索 |
TiO2薄膜型气敏传感器研究进展
金嘉炜, 李国臣, 张冶, 李公义, 楚增勇
国防科技大学 生物与化学系, 长沙 410072
Research progress in TiO2 thin film gas sensor
JIN Jia-wei, LI Guo-chen, ZHANG Ye, LI Gong-yi, CHU Zeng-yong
Department of Biology and Chemistry, National Defense University, Changsha 410072, China
全文: PDF(2863 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 TiO2纳米薄膜型气敏传感器具有制备方法简单、灵敏度高、一致性好、小型化等优点,且由于TiO2半导体的宽能带使其能够通过涂覆修饰其他元素使传感器性能得到大幅度提高,如今已经越来越受到研究者们的广泛关注。本文综述了当前国内外TiO2气敏传感器的研究进展,重点介绍了TiO2薄膜型气敏传感器在H2,NH3,H2S,VOC,CO,SO2六种常见还原性气体和CO2,NOx两种常见氧化性气体检测方面的应用,就其传感性能、传感机理进行了讨论,并展望了TiO2薄膜型气敏传感器研究的未来发展趋势,如通过向TiO2中掺杂导电微粒、贵金属或金属氧化物等以改良其性能,以期为新型气敏传感器的研究提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
金嘉炜
李国臣
张冶
李公义
楚增勇
关键词 TiO2纳米薄膜型气敏传感器传感性能传感机理    
Abstract:TiO2 nano-film type gas sensor has the advantages of simple preparation method, high sensitivity, good consistency and miniaturization, and the wide band of TiO2 semiconductor enables it to greatly improve the performance of the sensor by coating other elements. Nowadays, it has received more and more attention from researchers. In this paper, the research progress of TiO2 gas sensor at home and abroad was reviewed. The application of TiO2 thin film gas sensor in the detection of six common reducing gases(H2, NH3, H2S, VOC, CO, SO2) and two common oxidizing gases(CO2 and NOx) was introduced. In the application of gas detection, the sensing performance and sensing mechanism were discussed and the future research and development of TiO2 thin film gas sensor were prospected such as doping conductive particles, precious metals or metal oxides into TiO2 to improve its performance, which provides a reference for the study of new gas sensor.
Key wordsTiO2    nano-film type    gas sensor    sensing performance    sensing mechanism
收稿日期: 2019-05-29      出版日期: 2020-10-17
中图分类号:  O6-1  
通讯作者: 楚增勇(1974-),男,研究员,博士,主要从事可穿戴柔性传感器件、伪装隐身功能材料与器件方面的研究工作,联系地址:湖南省长沙市开福区德雅路109号国防科技大学北19栋518(410072),E-mail:chuzy@nudt.edu.cn     E-mail: chuzy@nudt.edu.cn
引用本文:   
金嘉炜, 李国臣, 张冶, 李公义, 楚增勇. TiO2薄膜型气敏传感器研究进展[J]. 材料工程, 2020, 48(10): 28-38.
JIN Jia-wei, LI Guo-chen, ZHANG Ye, LI Gong-yi, CHU Zeng-yong. Research progress in TiO2 thin film gas sensor. Journal of Materials Engineering, 2020, 48(10): 28-38.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000515      或      http://jme.biam.ac.cn/CN/Y2020/V48/I10/28
[1] 卜凡阳,文晓刚,万梅,等. 电子鼻预处理装置的开发及适用性研究[J].环境科学,2012(6):309-315. BU F Y,WEN X G,WAN M, et al. Development and applicability of electronic nose pretreatment device[J]. Environmental Science,2012(6):309-315.
[2] 缪惠流. 可燃气检测报警仪表在石油化工生产中的应用[J]. 化工自动化及仪表,1986(5):76-78. MIAO H L. Application of combustible gas detection and alarm instrument in petrochemical production[J]. Chemical Industry Automation & Instruments,1986(5):76-78.
[3] 方园,詹诗画,邹奉元. 电子鼻技术及其在服装领域的应用[J].现代纺织技术,2017(2):80-84. FANG Y,ZHAN S H,ZOU F Y. Electronic nose technology and its application in the field of clothing[J]. Modern Textile Technology,2017(2):80-84.
[4] 邹小波.基于天然可视化气敏材料的猪肉腐败变质检测[J].农产品加工(学刊),2012(11):9-13. ZOU X B. Pork spoilage detection based on natural visualization gas-sensitive materials[J]. Agricultural Products Processing(Science),2012(11):9-13.
[5] 刘铁兵,邵栋梁,沈清,等. 氧化锡气敏传感器动态响应特性用于农药残留检测的研究[J]. 传感技术学报,2008(5):35-39. LIU T B,SHAO D L,SHEN Q,et al. Research on the dynamic response characteristics of tin oxide gas sensor for pesticide residue detection[J].Journal of Transduction Technology,2008(5):35-39.
[6] AKBAR S A,YOUNKMAN L B. Sensing mechanism of a carbon monoxide sensor based on anatase titania[J]. Journal of the Electrochemical Society,1997,144(5):1750-1753.
[7] TANG H,PRASAD K,SANJINÈS R,et al. Electrical and optical properties of TiO2 anatase thin films[J]. Journal of Applied Physics,1994,75(4):2042-2047.
[8] MANERA M G,MONTAGNA G,FERREIROVILA E,et al. Enhanced gas sensing performance of TiO2 functionalized magneto-optical SPR sensors[J]. Journal of Materials Chemistry,2011,21(40):16049-16056.
[9] 陈楠.基于纳米结构TiO2的气体敏感性能及其机理研究[D]. 昆明:云南大学,2017. CHEN N. Study on gas sensitive properties and mechanisms based on nanostructured TiO2[D]. Kunming:Yunnan University,2017.
[10] XU L,NAN C,XING X,et al. A high-performance n-butanol gas sensor based on ZnO nanoparticles synthesized by a low-temperature solvothermal route[J]. RSC Advances,2015,5(67):54372-54378.
[11] LIU X,CHEN N,HAN B,et al. Nanoparticle cluster gas sensor:Pt activated SnO2 nanoparticles for NH3 detection with ultrahigh sensitivity[J]. Nanoscale,2015,7(36):14872-14880.
[12] CHEN Y,JUNG H,KIM J. Acetone vapor sensor made with cellulose-TiO2/MWCNTs hybrid nanocomposite[J].Proceedings of SPIE-the International Society for Optical Engineering,2012,8344:53-57.
[13] 姜涛,吴一平. 掺杂对金属半导体氧化物气敏性能影响的研究[J].材料导报,1996(2):25-28. JIANG T,WU Y P. Effect of doping on gas sensing properties of metal semiconductor oxides[J]. Materials Review,1996(2):25-28.
[14] SHIMIZU Y,SAKAMOTO K,NAKAOKA M,et al. H2 sensing performance of TiO2-based diode-type sensors[J]. Advanced Materials Research,2008,47/50:1510-1513.
[15] DU X,YUAN W,MU Y,et al. A new highly selective H2 sensor based on TiO2/PtO-Pt dual-layer films[J]. Cheminform,2002,33(48):3953-3957.
[16] JIAN G,LI Y,HU Z,et al. Ultrasensitive NH3 gas sensor from polyaniline nanograin enchased TiO2 fibers[J]. Journal of Physical Chemistry C,2010,114(21):9970-9974.
[17] DIGHAVKAR C,PATIL A,PATIL S,et al. Al-doped TiO2 thick film resistors as H2S gas sensor[J]. Sensors & Transdu-cers,2010,9(39):39-47.
[18] PEDHEKAR R B,RAGHUWANSHI F C,KAPSE V D. Low temperature H2S gas sensor based on Fe2O3 modified ZnO-TiO2 thick film[J]. International Journal of Materials Science and Engineering,2015,3(3):219-230.
[19] AGRAWAL R M. H2S sensing properties of metal oxide (SnO2-CuO-TiO2) thin films at room temperature[J]. Journal of Electron Devices,2012(12):730-733.
[20] SEO M H,YUASA M,KIDA T,et al. Gas sensor using noble metal-loaded TiO2 nanotubes for detection of large-sized volatile organic compounds[J]. Journal of the Ceramic Society of Japan,2011,119(11):884-889.
[21] RUIZ A,DEZANNEAU G,ARBIOL J,et al. Study of the influence of Nb content and sintering temperature on TiO2 sensing films[J]. Thin Solid Films,2003,436(1):90-94.
[22] IBRAHIM R W,DARUS M. Application of V-doped TiO2 as a sensor for detection of SO2[J]. Journal of Materials Chemistry,2001,11(12):3207-3210.
[23] LIANG Y Q,CUI Z D,ZHU S L,et al. Design of a highly sensitive ethanol sensor using a nano-coaxial p-Co3O4/n-TiO2 heterojunction synthesized at low temperature[J]. Nanoscale,2013,5(22):10916-10926.
[24] WU H,KAN K,WANG L,et al. Electrospinning of mesoporous p-type In2O3/TiO2 composite nanofibers for enhancing NOx gas sensing properties at room temperature[J]. CrystEngComm,2014,16(38):9116-9124.
[25] WANG Y L,TAN S,WANG J,et al. The gas sensing properties of TiO2 nanotubes synthesized by hydrothermal method[J]. Chinese Chemical Letters,2011,22(5):603-606.
[26] ALEV O,KILIÇ A,ÇAKIRLA Ç,et al. Gas sensing properties of p-Co3O4/n-TiO2 nanotube heterostructures[J]. Sensors,2018,18(4):1-11.
[27] LU Y C,PAN X R,XIE S J,et al. Studies on the properties of the ultrafine particle films of tin oxide[J]. Vacuum,1992,43(11):1075-1077.
[28] 谭小春,黄颂羽.电泳法制备TiO2超微粒薄膜的研究[J]. 化学物理学报,1989(5):416-421. TAN X C,HUANG S Y. Study on preparation of TiO2 ultrafine particle films by electrophoresis[J]. Chinese Journal of Chemical Physics,1989(5):416-421.
[29] LI X,ZHAO Y,WANG X,et al. Reduced graphene oxide (rGO) decorated TiO2 microspheres for selective room-temperature gas sensors[J]. Sensors and Actuators,2016,230(6):330-336.
[30] HYODO T,NAKAOKA M,SHIMIZU Y,et al. Diode-type H2 sensors using anodized TiO2 films-structural and compositional controls of noble metal sensing electrodes[J].Sensor Letters,2011,9(2):641-645.
[31] DU X Y,MU Y Y,GUI L L,et al. A new highly selective H2 sensor based on TiO2/PtO-Pt dual-layer films[J]. Cheminform,2002,33(48):3953-3957.
[32] YAMAMOTO G,YAMASHITA T,MATSUO K,et al. Effects of polytetrafluoroethylene or polyimide coating on H2sensing properties of anodized TiO2 films equipped with Pd-Pt electrodes[J]. Sensors & Actuators B Chemical,2013,183(20):253-264.
[33] PENG X,WANG Z,HUANG P,et al. Comparative study of two different TiO2 film sensors on response to H2 under UV light and room temperature[J]. Sensors,2016,16(8):1249-1262.
[34] CHOMKITICHAI W,TAMAEKONG N,LIEWHIRAN C,et al. H2 sensor based on Au/TiO2 nanoparticles synthesized by flame spray pyrolysis[J]. Engineering Journal,2012,16(3):13-16.
[35] 张嘉琪,胡馨升,陈培飞,等. 纳米TiO2敏感膜修饰的QCM气体传感器检测氨气的研究[J]. 仪表技术与传感器,2015(2):5-7. ZHANG J Q,HU X S,CHEN P F,et al. Study on the detection of ammonia by QCM gas sensor modified with nano-TiO2 sensitive film[J]. Instrument Technology and Sensor,2015(2):5-7.
[36] GUERNION N,EWEN R J,PIHLAINEN K,et al. The fabrication and characterisation of a highly sensitive polypyrrole sensor and its electrical responses to amines of differing basicity at high humidities[J]. Synthetic Metals,2002,126(2/3):301-310.
[37] ZHANG Y,HE X,LI J,et al. Fabrication and ethanol-sensing properties of micro gas sensor based on electrospun SnO2 nanofibers[J]. Sensors & Actuators:B,2008,132(1):67-73.
[38] JO Y D,LEE S,SEO J,et al. TiO2 particles on a 3D network of single-walled nanotubes for NH3 gas sensors[J]. Nanosci Nanotechnol,2014,14(12):9148-9151.
[39] TAI H,JIANG Y,XIE G,et al. Self-assembly of TiO2/polypyrrole nanocomposite ultrathin films and application for an NH3 gas sensor[J]. International Journal of Environmental Analytical Chemistry,2007,87(8):539-551.
[40] GONG J, LI Y, HU Z,et al. Ultrasensitive NH3 gas sensor from polyaniline nanograin enchased TiO2 fibers[J]. Journal of Physical Chemistry C,2010,114(21):9970-9974.
[41] ZHANG T,NI X M B,YOO B,et al. Electrochemically functionalized single-walled carbon nanotube gas sensor[J]. Electroana-lysis,2010,18(12):1153-1158.
[42] WU H,HUANG H,ZHOU J,et al. One-step synthesis of ordered Pd@TiO2 nanofibers array film as outstanding NH3 gas sensor at room temperature[J]. Scientific Reports,2017,7(1):1-11.
[43] MENG W,DAI L,ZHU J,et al. A novel mixed potential NH3 sensor based on TiO2@WO3 core-shell composite sensing electrode[J]. Electrochimica Acta,2016,193:302-310.
[44] GARADKAR K M,SHIRKE B S,HANKARE P P,et al. Low cost nanostructured anatase TiO2 as a H2S gas sensor synthesized by microwave assisted technique[J]. Sensor Letters,2011,9(2):526-532.
[45] PERILLO P M,RODRIGUEZ D F. TiO2 nanotubes membrane flexible sensor for low-temperature H2S detection[J]. Chemosensors,2016,4(3):15-24.
[46] WANG B, ZHU L F, YANG Y H, et al. Fabrication of a SnO2 nanowire gas sensor and sensor performance for hydrogen[J]. Journal of Physical Chemistry C,2008,112(17):6643-6647.
[47] CHAUDHARI G N,BAMBOLE D R,BODADE A B,et al. Characterization of nanosized TiO2 based H2S gas sensor[J]. Journal of Materials Science,2006,41(15):4860-4864.
[48] ABBASI A,SARDROODI J J. Adsorption and dissociation of H2S on nitrogen-doped TiO2 anatase nanoparticles:insights from DFT computations[J]. Tribology-Materials Surfaces & Interfaces,2017,8(4):15-27.
[49] ZHU C L,CHEN Y J,WANG R X,et al. Synthesis and enhanced ethanol sensing properties of alpha-Fe2O3/ZnO hetero-nanostructures[J]. Sensors & Actuators B Chemical,2009,140(1):185-189.
[50] YU J H,CHOI G M. Selective CO gas detection of CuO- and ZnO-doped SnO2 gas sensor[J]. Sensors & Actuators B Chemical,2001,75(1/2):56-61.
[51] BAI S,LI D,HAN D,et al. Preparation, characterization of WO3-SnO2 nanocomposites and their sensing properties for NO2[J]. Sensors & Actuators B Chemical,2010,150(2):749-755.
[52] YU J H,CHOI G M. Electrical and CO gas sensing properties of ZnO-SnO2 composites[J]. Sensors & Actuators B Chemical,1998,52(3):251-256.
[53] GASPERA E D,GUGLIELMI M,AGNOLI S,et al. Au nano-particles in nanocrystalline TiO2-NiO films for SPR-based,selective H2S gas sensing[J]. Chemistry of Materials,2010,22(11):3407-3417.
[54] LI F B,LI X Z,AO C H,et al. Enhanced photocatalytic degradation of VOCs using Ln3+-TiO2 catalysts for indoor air purification[J]. Chemosphere,2005,59(6):787-800.
[55] FIORENZA R,BELLARDITA M,D'URSO L,et al. Au/TiO2-CeO2 catalysts for photocatalytic water splitting and VOCs oxidation reactions[J]. Catalysts,2016,6(8):121-133.
[56] TELEKI A. Flame synthesis and direct deposition of TiO2 and SnO2 sensors for CO, isoprene, acetone or ethanol[J]. Materials Science and Technology,2006,1(1):29-38.
[57] SHAO S,CHEN Y,HUANG S,et al. A tunable volatile organic compound sensor by using PtOx/GQDs/TiO2 nanocomposite thin films at room temperature under visible-light activation[J]. RSC Advances,2017,7(63):39859-39868.
[58] PAN D,JIAO J, LI Z,et al. Efficient separation of electron-hole pairs in graphene quantum dots by TiO2 heterojunctions for dye degradation[J]. ACS Sustainable Chemistry & Engineering,2015,8(9):191-197.
[59] REN L,QI X,HAO X,et al. VOC gas sensor based on ZnO synthesized by sol-gel process and improvement in gas sensitivity by adding TiO2[C]//EMGEEE. 2012 International Conference on Engineering Materials, Geotechnical Engineering and Environmental Engineering. Shijiazhuang:EMGEEE,2012:67-70.
[60] ALHOMOUDI I A,RIMAI L,NAIK R,et al. Anatase TiO2 thin films based CO gas sensor[J]. MRS Proceedings,2005,888(21):8607-8614.
[61] POZOS H G,KRISHNA K T,AMADOR M D,et al. TiO2 thin film based gas sensors for CO-detection[J]. Journal of Materials Science Materials in Electronics,2018,29(18):1-9.
[62] GAO Y,THEVUTHASAN S,MCCREADY D E,et al. MOCVD growth and structure of Nb- and V-doped TiO2 films on sapphire[J]. Journal of Crystal Growth,2000,212(1):178-190.
[63] GUO W,LIU T,ZHANG H,et al. Gas-sensing performance enhancement in ZnO nanostructures by hierarchical morphology[J]. Sensors & Actuators B Chemical,2012,166/167(6):492-499.
[64] LIU X,LING Y,HUANG L,et al. A novel CO sensor based on the point contact between Pd decorated TiO2 nanotubes array[J]. Journal of Nanoscience & Nanotechnology,2013,13(2):869-872.
[65] JUANG F R,FANG Y K,CHIANG Y T,et al. Comparative study of carbon monoxide gas sensing mechanism for the LTPS MOS Schottky diodes with various metal oxides[J]. IEEE Sensors Journal,2011,11(5):1227-1232.
[66] NISAR J,TOPALIAN Z,SARKAR A D,et al. TiO2-based gas sensor:a possible application to SO2[J]. ACS Applied Materials & Interfaces,2013,5(17):8516-8548.
[67] SABERI M,ASHKARRAN A A. Tungsten-doped TiO2nanolayers with improved CO2 gas sensing properties for environmental applications[J]. Surface Review & Letters,2017,24(2):1-10.
[68] CHAIYO P,DUANGSING B,THUMTHAN O,et al. Electrical and gas sensing properties of TiO2/GO nanocomposites for CO2 sensor application[J]. Journal of Physics,2017,901(1):1-4.
[69] YÜCE A,SARUHAN B.1.1.3 Al-doped TiO2 semiconductor gas sensor for NO2-detection at elevated temperatures[C]//IMCS,the 14th International Meeting on Chemical Sensors. Nuremberg,Germany:IMCS,2012:68-71.
[70] LÜ R J,ZHOU W,SHI K Y,et al. Alumina decorated TiO2 nanotubes with ordered mesoporous walls as high sensitivity NO(x) gas sensors at room temperature[J]. Nanoscale,2013,5(18):8569-8576.
[1] 刘欢, 张瑞英, 李金轩, 杨森, 闫晗. TiO2粒径对Al-TiO2-C细化剂组织及细化效果的影响[J]. 材料工程, 2020, 48(8): 126-133.
[2] 杜晶晶, 赵军伟, 程晓民, 施飞. 高效光催化降解气相苯纳米TiO2微球的制备[J]. 材料工程, 2020, 48(5): 100-105.
[3] 李淑文, 赵孔银, 陈康, 李金刚, 赵磊, 王晓磊, 魏俊富. TiO2共混丝朊接枝聚丙烯腈过滤膜制备及性能研究[J]. 材料工程, 2020, 48(3): 47-52.
[4] 朱晓东, 王尘茜, 雷佳浩, 裴玲秀, 朱然苒, 冯威, 孔清泉. 锐钛矿型银掺杂二氧化钛紫外光及模拟太阳光光催化性能[J]. 材料工程, 2020, 48(2): 59-64.
[5] 成明, 杨继凯, 郝志旭, 亢嘉琪, 王新, 王国政, 宦克为. TiO2基底对MoO3/TiO2复合薄膜电致变色性能的影响[J]. 材料工程, 2020, 48(10): 163-168.
[6] 曾宝平, 贾瑛, 许国根, 李明, 冯锐. CTAB作用下TiO2/g-C3N4的制备及光催化降解偏二甲肼废水[J]. 材料工程, 2019, 47(9): 139-144.
[7] 赵斌, 张芮境, 申倩倩, 王羿, 薛晋波, 张爱琴, 贾虎生. TiO2纳米管阵列基底退火温度对CdSe/TiO2异质结薄膜光电化学性能的影响[J]. 材料工程, 2019, 47(8): 90-96.
[8] 李曦. 二维和零维纳米材料协同增强的高性能纳米复合材料[J]. 材料工程, 2019, 47(4): 47-55.
[9] 权月, 尹杰, 王园园, 包斯元, 鲁雄, 冯波, 周杰. 暴露高活性晶面的TiO2纳米管的制备及生物活性[J]. 材料工程, 2019, 47(4): 97-104.
[10] 李丹丹, 姚广铮, 梁桂琰, 荣旭发, 薛若雨, 付忠田. 氧化石墨烯复合二氧化钛光催化剂的制备及模拟染料废水处理[J]. 材料工程, 2019, 47(12): 104-110.
[11] 周铁路, 刘会娥, 陈爽, 丁传芹, 齐选良. 诱导助剂对石墨烯负载的TiO2颗粒分布、结构和光催化活性的影响[J]. 材料工程, 2018, 46(8): 43-50.
[12] 王鹏, 张瑞英, 韩小伟, 刘天丽, 杨森. 不同压制压力制备的Al-TiO2-C细化剂对ZL101合金细化效果的影响[J]. 材料工程, 2018, 46(8): 84-90.
[13] 宗志芳, 杨麟, 张浩, 熊磊. 环境协调型Ce-La/TiO2复合材料的制备及光-湿-热性能[J]. 材料工程, 2018, 46(5): 145-150.
[14] 张曼莉, 邱长军, 蒋艳林, 郑文权, 夏琰. 激光原位合成Al2O3-TiO2复合陶瓷涂层组织结构与性能[J]. 材料工程, 2018, 46(2): 57-65.
[15] 张浩. 基于光催化性能的Cu-Ce/TiO2湿性能[J]. 材料工程, 2018, 46(1): 114-118.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn