Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (1): 11-22    DOI: 10.11868/j.issn.1001-4381.2019.001121
  新能源材料专栏 本期目录 | 过刊浏览 | 高级检索 |
有机电解液在钠离子电池中的研究进展
张福明1, 王静1, 张鹏1, 时志强1,2
1. 天津工业大学 材料科学与工程学院, 天津 300387;
2. 天津市先进纤维与储能技术重点实验室, 天津 300387
Research progress of organic electrolyte for sodium ion battery
ZHANG Fu-ming1, WANG Jing1, ZHANG Peng1, SHI Zhi-qiang1,2
1. School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China;
2. Tianjin Key Laboratory of Advanced Fiber and Energy Storage Technology, Tianjin 300387, China
全文: PDF(6500 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 随着对大型储能电池的需求逐渐增加,钠离子电池由于其资源丰富,价格低廉且与锂性质相似等优点而被广泛关注。在钠离子电池的关键材料选择中,钠离子电池的电化学性能和安全性同时受电解液的影响,这不仅决定了电池的电化学窗口和能量密度,而且还控制着电极/电解液界面的性质。本文首先综述了钠离子电池电解质的基本要求、主要分类,重点讨论了对钠离子电池电解质的选择性要求及不同钠盐的物化性能和对固体电解质界面的影响;其次针对不同溶剂和材料的兼容性以及材料在不同溶剂体系中的储能机制等,分别对材料在醚类和酯类电解液中获得的固体电解质界面特点、倍率性能、循环性能等展开分析。最后指出钠离子电池电解质未来在与材料的匹配、关键性表征方法等方面的发展路线。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张福明
王静
张鹏
时志强
关键词 钠离子电池有机电解液醚基电解液酯基电解液固体电解质界面    
Abstract:As the demand for large-scale batteries for electrical energy storage is increasing, sodium-ion batteries have attracted a lot of attention due to the abundance,cost-effectiveness of sodium resources and resemblance with lithium. In the key material selection of sodium ion battery, electrochemical performance and safety of a sodium-ion battery were affected by the electrolyte, which not only decides the electrochemical window and energy density, but also controls the electrode/electrolyte interfaces. In this paper, the basic requirements and classification of electrolyte of sodium ion battery were reviewed. The selective requirements of electrolyte in sodium ion batteries, the physicochemical properties of different sodium salts and the effects on solid electrolyte interface were discussed. Based on the compatibility of different solvents and materials as well as the energy storage mechanism of materials in different solvent systems, the solid electrolyte interface, rate and cycling performance obtained by materials in ether and ester based electrolytes were analyzed. Finally, the future development of sodium ion battery electrolyte in terms of matching with materials and key characterization methods were prospected.
Key wordssodium ion battery    organic electrolyte    ether-based electrolyte    ester-based electrolyte    solid electrolyte interphase
收稿日期: 2019-12-03      出版日期: 2021-01-14
中图分类号:  TN249  
基金资助:国家自然科学基金(51603147);天津市科技支撑计划重点项目(15ZCZDGX00270);天津市人才引进与科技合作计划863成果转化项目(14RCHZGX00859)
通讯作者: 时志强(1977-),男,教授,博士,研究方向为能源材料、炭材料,联系地址:天津市西青区宾水西道399号天津工业大学材料科学与工程学院(300387),E-mail:shizhiqiang@tiangong.edu.cn     E-mail: shizhiqiang@tiangong.edu.cn
引用本文:   
张福明, 王静, 张鹏, 时志强. 有机电解液在钠离子电池中的研究进展[J]. 材料工程, 2021, 49(1): 11-22.
ZHANG Fu-ming, WANG Jing, ZHANG Peng, SHI Zhi-qiang. Research progress of organic electrolyte for sodium ion battery. Journal of Materials Engineering, 2021, 49(1): 11-22.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.001121      或      http://jme.biam.ac.cn/CN/Y2021/V49/I1/11
[1] CHEN H,CONG T N,YANG W,et al.Progress in electrical energy storage system:a critical review[J].Progress in Natural Science,2009,19(3):291-312.
[2] BRADBURY K,PRATSON L,PATIÑO-ECHEVERRI D. Economic viability of energy storage systems based on price arbitrage potential in real-time U.S. electricity markets[J]. Applied Energy,2014,114:512-519.
[3] STERNBERG A,BARDOW A.Power-to-what?-environmental assessment of energy storage systems[J]. Energy & Environmental Science,2015,8(2):389-400.
[4] THACKERAY M M,WOLVERTON C,ISAACS E D.Electrical energy storage for transportation-approaching the limits of,and going beyond,lithium-ion batteries[J]. Energy & Environmental Science,2012,5(7):7854-7863.
[5] TARASCON J M.Is lithium the new gold?[J]. Nat Chem,2010,2(6):510.
[6] 王凡凡,刘晓斌,陈龙,等. 室温钠离子电池关键材料研究进展[J]. 电化学,2019,25(1):58-79. WANG F F,LIU X B,CHEN L,et al.Research progress on key materials of room temperature sodium ion batteries[J]. Journal of Electrochemistry,2019,25(1):58-79.
[7] PALOMARES V,SERRAS P,VILLALUENGA I,et al.Na-ion batteries,recent advances and present challenges to become low cost energy storage systems[J]. Energy & Environmental Science,2012,5(3):5884-5901.
[8] KIM S W,SEO D H,MA X,et al.Electrode materials for rechargeable sodium-ion batteries:potential alternatives to current lithium-ion batteries[J]. Advanced Energy Materials,2012,2(7):710-721.
[9] LIN Z,XIA Q,WANG W,et al.Recent research progresses in ether-and ester-based electrolytes for sodium-ion batteries[J]. InfoMat,2019,1(3):376-389.
[10] CHE H,CHEN S,XIE Y,et al.Electrolyte design strategies and research progress for room-temperature sodium-ion batteries[J]. Energy & Environmental Science,2017,10(5):1075-1101.
[11] XU K.Electrolytes and interphases in Li-ion batteries and beyond[J]. Chem Rev,2014,114(23):11503-11618.
[12] BOMMIER C,JI X.Electrolytes,SEI formation,and binders:a review of nonelectrode factors for sodium-ion battery anodes[J]. Small,2018,14(16):e1703576.
[13] HAYASHI A,NOI K,SAKUDA A,et al.Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries[J]. Nat Commun,2012,3(5):856.
[14] WANG Q,JIANG L,YU Y,et al.Progress of enhancing the safety of lithium ion battery from the electrolyte aspect[J]. Nano Energy,2019,55:93-114.
[15] LEVCHIK S V,WEIL E D.A review of recent progress in phosphorus-based flame retardants[J]. Journal of Fire Sciences,2006,24(5):345-364.
[16] JACHE B,ADELHELM P. Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena[J]. Angewandte Chemie International Edition,2014,53(38):10169-10173.
[17] LU Y,LI L,ZHANG Q,et al.Electrolyte and interface engineering for solid-state sodium batteries[J]. Joule,2018,2(9):1747-1770.
[18] PONROUCHA A,MONTIA D,BOSCHIN A,et al.Non-aqueous electrolytes for sodium-ion batteries[J]. Journal of Materials Chemistry A,2015,3:22-42.
[19] TAKADA K,YAMADA Y,WATANABE E,et al.Unusual passivation ability of superconcentrated electrolytes toward hard carbon negative electrodes in sodium-ion batteries[J]. ACS Appl Mater Interfaces,2017,9(39):33802-33809.
[20] DONG X,CHEN L,LIU J,et al.Environmentally-friendly aqueous Li (or Na) -ion battery with fast electrode kinetics and super-long life[J]. Science Advances,2016,2(1):e1501038.
[21] DONG X,CHEN L,SU X,et al.Flexible aqueous lithium-ion battery with high safety and large volumetric energy density[J]. Angewandte Chemie International Edition,2016,55(26):7474-7477.
[22] 朱墨书棋,林春香,骆微,等.离子液体中纤维素/TiO2复合材料的制备及其性能[J]. 材料工程,2016,44(12):67-73. ZHUMO S Q,LIN C X,LUO W,et al.Ionic liquid-assisted synthesis of cellulose/TiO2 composite and photocatalytic performance[J]. Journal of Materials Engineering,2016,44(12):67-73.
[23] 孙健,李岱霖,倪菲,等.离子液体应用的研究进展[J]. 应用化工,2019,48(7):1724-1733. SUN J,LI D L,NI F,et al.Advances in the applications of ionic liquids[J]. Applied Chemical Industry,2019,48(7):1724-1733.
[24] HUANG Y,ZHAO L,LI L,et al.Electrolytes and electrolyte/electrode interfaces in sodium-ion batteries:from scientific research to practical application[J]. Advanced Materials,2019,31(21):1808393.
[25] YANG Q,ZHANG Z,SUN X G,et al.Ionic liquids and derived materials for lithium and sodium batteries[J]. Chem Soc Rev,2018,47(6):2020-2064.
[26] KIM J I,CHOI Y,CHUNG K Y,et al.A structurable gel-polymer electrolyte for sodium ion batteries[J]. Advanced Functional Materials,2017,27(34):1701768.
[27] CHEN G,ZHANG F,ZHOU Z,et al.A flexible dual-ion battery based on PVDF-HFP-modified gel polymer electrolyte with excellent cycling performance and superior rate capability[J]. Advanced Energy Materials,2018,8(25):1801219.
[28] GAO H,ZHOU W,PARK K,et al.A sodium-ion battery with a low-cost cross-linked gel-polymer electrolyte[J]. Advanced Energy Materials,2016,6(18):1600467.
[29] LIM D H,AGOSTINI M,AHN J H,et al.An electrospun nanofiber membrane as gel-based electrolyte for room-temperature sodium-sulfur batteries[J]. Energy Technology,2018,6(7):1214-1219.
[30] ZHANG Z,ZHANG Q,REN C,et al.A ceramic/polymer composite solid electrolyte for sodium batteries[J]. Journal of Materials Chemistry A,2016,4(41):15823-15828.
[31] 付雪连,李玉超,战艳虎,等. 全固态钠离子电池用聚氧化乙烯基固态聚合物电解质研究进展[J]. 高分子材料科学与工程,2019,35(9):177-184. FU X L,LI Y C,ZHAN Y H,et al.Progress of polyethylene oxide-based solid polymer electrolytes for all solid-state sodium-ion battery[J]. Polymer Materials Science and Engineering,2019,35(9):177-184.
[32] KIM J J,YOON K,PARK I,et al.Progress in the development of sodium-ion solid electrolytes[J]. Small,2017,1(10):1700219.
[33] PLEWA-MARCZEWSKA A,TRZECIAK T,BITNER A,et al.New tailored sodium salts for battery applications[J]. Chemistry of Materials,2014,26(17):4908-4914.
[34] CHEN S,ISHII J,HORIUCHI S,et al.Difference in chemical bonding between lithium and sodium salts:influence of covalency on their solubility[J]. Phys Chem Chem Phys,2017,19(26):17366-17372.
[35] XU K.Nonaqueous liquid electrolytes for lithium-based rechargeable batteries[J].Chem Rev,2004,104(10):4303-4417.
[36] PONROUCH A,MARCHANTE E,COURTY M,et al.In search of an optimized electrolyte for Na-ion batteries[J]. Energy & Environmental Science,2012,5(9):8572-8583.
[37] STEVENS D A,DAHNA J R.High capacity anode materials for rechargeable sodium-ion batteries[J]. Electrochem Soc,2000,4(147):1271-1273.
[38] RICARDO A,PEDRO L,GREGORIO F O,et al.Carbon microspheres obtained from resorcinol-formaldehyde as high-capacity electrodes for sodium-ion batteries[J].Electrochemical and Solid-State Letters,2005,8(4):A222-A225.
[39] KOMABA S,MURATA W,ISHIKAWA T,et al.Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries[J]. Advanced Functional Materials,2011,21:3859-3867.
[40] ESHETU G G,GRUGEON S,KIM H,et al.Comprehensive insights into the reactivity of electrolytes based on sodium ions[J]. Chem Sus Chem,2016,9(5):462-471.
[41] ZHU Y,LUO X,ZHI H,et al.Diethyl(thiophen-2-ylmethyl)phosphonate:a novel multifunctional electrolyte additive for high voltage batteries[J]. Journal of Materials Chemistry A,2018,6(23):10990-11004.
[42] ESHETU G G,GRUGEON S,GACHOT G,et al.LiFSI vs LiPF6 electrolytes in contact with lithiated graphite:comparing thermal stabilities and identification of specific SEI-reinforcing additives[J]. Electrochimica Acta,2013,102:133-141.
[43] ESHETU G G,DIEMANT T,HEKMATFAR M,et al.Impact of the electrolyte salt anion on the solid electrolyte interphase formation in sodium ion batteries[J]. Nano Energy,2019,55:327-340.
[44] YABUUCHI N,KUBOTA K,DAHBI M,et al.Research development on sodium-ion batteries[J]. Chem Rev,2014,114(23):11636-11682.
[45] SOTO F A,YAN P,ENGELHARD M H,et al.Tuning the solid electrolyte interphase for selective Li-and Na-ion storage in hard carbon[J]. Advanced Materials,2017,29(18):1606860.
[46] SHAKOURIAN-FARD M,KAMATH G,SMITH K,et al.Trends in Na-ion solvation with alkyl-carbonate electrolytes for sodium-ion batteries:insights from first-principles calculations[J]. The Journal of Physical Chemistry C,2015,119(40):22747-22759.
[47] XING L,ZHENG X,SCHROEDER M,et al.Deciphering the ethylene carbonate-propylene carbonate mystery in Li-ion batteries[J]. Accounts of Chemical Research,2018,51(2):282-289.
[48] KAMATH G,CUTLER R W,DESHMUKH S A,et al.In silico based rank-order determination and experiments on nonaqueous electrolytes for sodium ion battery applications[J]. The Journal of Physical Chemistry C,2014,118(25):13406-13416.
[49] LEE M,HONG J,LOPEZ J,et al.High-performance sodium-organic battery by realizing four-sodium storage in disodium rhodizonate[J]. Nature Energy,2017,2(11):861-868.
[50] SONG J,XIAO B,LIN Y,et al.Interphases in sodium-ion batteries[J]. Advanced Energy Materials,2018,8(17):1703082.
[51] ALVARADO J,SCHROEDER M A,POLLARD T P,et al.Bisalt ether electrolytes:a pathway towards lithium metal batteries with Ni-rich cathodes[J]. Energy & Environmental Science,2019,12(2):780-794.
[52] MIAO R,YANG J,XU Z,et al.A new ether-based electrolyte for dendrite-free lithium-metal based rechargeable batteries[J]. Sci Rep,2016,6:21771.
[53] XU G L,AMINE R,ABOUIMRANE A,et al.Challenges in developing electrodes,electrolytes,and diagnostics tools to understand and advance sodium-ion batteries[J]. Advanced Energy Materials,2018,8(14):1702403.
[54] KIM H,HONG J,PARK Y U,et al.Sodium storage behavior in natural graphite using ether-based electrolyte systems[J]. Advanced Functional Materials,2015,25(4):534-541.
[55] JACHE B,BINDER J O,ABE T,et al.A comparative study on the impact of different glymes and their derivatives as electrolyte solvents for graphite co-intercalation electrodes in lithium-ion and sodium-ion batteries[J]. Physical Chemistry Chemical Physics,2016,18(21):14299-14316.
[56] HONG S Y,KIM Y,PARK Y,et al.Charge carriers in rechargeable batteries:Na ions vs Li ions[J]. Energy & Environmental Science,2013,6(7):2067-2081.
[57] XU Z L,YOON G,PARK K Y,et al.Tailoring sodium intercalation in graphite for high energy and power sodium ion batteries[J]. Nature Communications,2019,10(1):2598.
[58] XIAO B W,SOTO F A,GU M,et al.Lithium-pretreated hard carbon as high-performance sodium-ion battery anodes[J]. Advanced Energy Materials,2018,8(24):1801441.
[59] BAI P,HE Y,XIONG P,et al.Long cycle life and high rate sodium-ion chemistry for hard carbon anodes[J]. Energy Storage Materials,2018,13:274-282.
[60] ZHU Y E,YANG L,ZHOU X,et al.Boosting the rate capability of hard carbon with an ether-based electrolyte for sodium ion batteries[J]. Journal of Materials Chemistry A,2017,5(20):9528-9532.
[61] HOU B H,WANG Y Y,NING Q L,et al.Self-supporting, flexible, additive-free, and scalable hard carbon paper self-interwoven by 1D microbelts:superb room/low-temperature sodium storage and working mechanism[J]. Advanced Materials,2019,31(40):e1903125.
[62] ZHANG J,WANG D W,LV W,et al.Achieving superb sodium storage performance on carbon anodes through an ether-derived solid electrolyte interphase[J]. Energy & Environmental Science,2017,10(1):370-376.
[63] YANG B,LIU S,GUO X,et al.Na-ion storage behaviors of quadrangular herringbone-carbon nanotubes in ether-and ester-based electrolyte systems[J]. ACS Sustainable Chemistry & Engineering,2018,6(12):17184-17193.
[64] XIAO W,SUN Q,LIU J,et al.Utilizing the full capacity of carbon black as anode for Na-ion batteries via solvent co-intercalation[J]. Nano Research,2017,10(12):4378-4387.
[65] LI K,ZHANG J,LIN D,et al.Evolution of the electrochemical interface in sodium ion batteries with ether electrolytes[J]. Nat Commun,2019,10(1):725.
[66] SEH Z W,SUN J,SUN Y,et al. A highly reversible room-temperature sodium metal anode[J]. ACS Cent Sci,2015,1(8):449-455.
[1] 吴波, 郑帼, 孙玉, 崔莹, 吴炳洋. 有机电解液电化学改性PAN基碳纤维的表面性能[J]. 材料工程, 2016, 44(9): 52-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn