Please wait a minute...
 
2222材料工程  2020, Vol. 48 Issue (12): 119-125    DOI: 10.11868/j.issn.1001-4381.2019.001123
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
球磨时间对粉末冶金制备超细晶Mg-3Al-Zn合金组织及力学性能的影响
房娃1, 李继光2, 杜正勇2
1. 天津职业技术师范大学 汽车模具智能制造技术国家地方联合工程实验室, 天津 300222;
2. 天津航天长征火箭制造有限公司, 天津 300462
Effect of ball milling time on microstructure and mechanical properties of ultrafine- grained Mg-3Al-Zn alloy prepared by powder metallurgy
FANG Wa1, LI Ji-guang2, DU Zheng-yong2
1. National-Local Joint Engineering Laboratory of Intelligent Manufacturing Oriented Automobile Die&Mold, Tianjin University of Technology and Education, Tianjin 300222, China;
2. Tianjin Long March Launch Vehicle Manufacturing Co., Ltd., Tianjin 300462, China
全文: PDF(11082 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用高能球磨+冷压制坯+温挤压工艺制备超细晶Mg-3Al-Zn合金,研究球磨时间对合金组织及力学性能的影响。结果表明:球磨过程中Al和Zn元素完全固溶到镁基体中,形成了单相固溶体。球磨20 h后,粉末颗粒平均粒径约为25 μm,平均晶粒尺寸约为45 nm;粉末经冷压制坯+温挤压致密化后,球磨20 h合金的平均晶粒尺寸为600 nm,晶粒形状规则且为等轴晶。所有超细晶合金都表现出较高的力学性能,球磨20 h后合金屈服强度为369 MPa,抗拉强度为401 MPa,断裂应变为3.5%。超细晶镁合金的拉伸真应力-真应变曲线呈现出一种理想刚塑性的特征,而压缩真应力-真应变曲线明显分为加工硬化、加工软化、加工硬化3个阶段。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
房娃
李继光
杜正勇
关键词 超细晶镁合金微观组织力学性能球磨时间    
Abstract:The ultrafine-grained Mg-3Al-Zn alloy was prepared by high energy ball milling,cold vacuum press and warm extrusion. The influence of ball milling time on the microstructure and mechanical properties of the alloy was studied. The results show that Al and Zn elements completely dissolve into the magnesium matrix in the process of ball milling. The single phase solid solution is formed. After the ball-milling for 20 h, the average particle size of the powder particles is about 25 μm, and the average grain size is about 45 nm. After the powder is densified by cold pressing and warm extruded, the average grain size of the alloy milled for 20 h is 600 nm, and the grain shape is regular and equiaxed crystal. All ultrafine-grained alloys show higher mechanical properties. The yield strength, tensile strength and breaking strain of the alloy after ball milling for 20 h are 369 MPa, 401 MPa and 3.5%, respectively. The tensile true stress-true strain curve of ultrafine-grained magnesium alloy shows a characteristic of ideal rigid plasticity. The compression true stress-true strain curve can be divided into three stages: working hardening, working softening and working hardening.
Key wordsultra-fine grain    magnesium alloy    microstructure    mechanical property    ball milling time
收稿日期: 2019-12-04      出版日期: 2020-12-22
中图分类号:  TG146.2+2  
基金资助:国家自然科学基金项目(51875409)
通讯作者: 房娃(1979-),女,讲师,博士研究生,主要从事细晶、超细晶镁铝等轻合金的制备与表征,联系地址:天津市津南区大沽南路1310号天津职业技术师范大学机械工程学院(300222),E-mail:fangwa@tute.edu.cn     E-mail: fangwa@tute.edu.cn
引用本文:   
房娃, 李继光, 杜正勇. 球磨时间对粉末冶金制备超细晶Mg-3Al-Zn合金组织及力学性能的影响[J]. 材料工程, 2020, 48(12): 119-125.
FANG Wa, LI Ji-guang, DU Zheng-yong. Effect of ball milling time on microstructure and mechanical properties of ultrafine- grained Mg-3Al-Zn alloy prepared by powder metallurgy. Journal of Materials Engineering, 2020, 48(12): 119-125.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.001123      或      http://jme.biam.ac.cn/CN/Y2020/V48/I12/119
[1] AVEDESIAN M M, BAKER H. Magnesium and magnesium alloys[M].Ohio:ASM International,1999:78-81.
[2] BUSK R S. Magnesium production design[M].New York:Marcel Dekker Inc,1986:12-13.
[3] MORDIKE B L, EBERT T. Magnesium properties,application,potential[J]. Materials Science and Engineering:A, 2001, 302(1):37-45.
[4] LUO A A. Recent magnesium alloy development for automotive powertrain applications[J].Materials Science Forum, 2003, 419/422:57-66.
[5] 陈振华. 变形镁合金[M]. 北京:化学工业出版社, 2005:11-30. CHEN Z H. Wrought magnesium alloys[M]. Beijing:Chemical Industry Press, 2005:11-30.
[6] JEONG H L, HUN L, BYUNG J K, et al. Improved tensile properties of AZ31 Mg alloy subjected to various caliber-rolling strains[J].Journal of Magnesium and Alloys,2019,7(3):381-387.
[7] ZHANG H, YAN Y, FAN J F, et al. Mechanical properties of AZ31 magnesium alloy plates by pre-rolling followed by warm compression[J]. Materials Science and Engineering:A, 2014,618(17):540-545.
[8] WANG R F, MAO P L. Influence of pre-twinning on high strain rate compressive behavior of AZ31 Mg-alloys[J]. Materials Science and Engineering:A, 2019,742(10):309-317.
[9] NIE H H, WEI L, CHEN H S, et al. Vacuum hot pressed AZ31/UCF/AZ31 composite sheets:microstructure and mechanical properties[J].Vacuum, 2017,144(8):247-255.
[10] ZHAO G W, FAN J F, ZHANG H, et al.Exceptional mechanical properties of ultra-fine grain AZ31 alloy by the combined processing of ECAP, rolling and EPT[J].Materials Science and Engineering:A,2018,731(25):54-60.
[11] 李小强,李尚鹏,丁艳林,等.高能球磨对Mg-Zn-Zr合金微观组织与力学性能的影响[J].材料导报,2017, 31(18):77-80. LI X Q, LI S P,DING Y L,et al.Effect of high milling on the microstructure and mechanical properties of Mg-Zn-Zr alloy[J]. Materials Review, 2017, 31(18):77-80.
[12] KHAN M U F, MIRZA R K. High hardness and thermal stability of nanocrystalline Mg-Al alloys synthesized by the high-energy ball milling[J].Materialia, 2018, 4(10):406-416.
[13] LU L, RAVIPRASAD K, LAI M O. Nanostructured Mg-5%Al-x%Nd alloys[J]. Materials Science and Engineering:A, 2004, 368(1/2):117-125.
[14] LAI M O, LU L, LAING W. Formation of magnesium nanocomposite via mechanical milling[J]. Composite Structures, 2004, 66(1/4):301-304.
[15] KAWAMURA Y, HAYASHI K, INOUNE A, et al. Rapidly solidified powder metallurgy Mg97Zn1Y2 alloys with excellent tensile yield strength above 600 MPa[J]. Materials Transactions, 2001, 42(7):1172-1176.
[16] ZHOU H P, HU L X, SUN Y. Synthesis of nanocrystalline AZ31 magnesium alloy with titanium addition by mechanical milling[J]. Materials Characterization, 2016,113(3):108-116.
[17] LV L, LAI M O.Mechanical alloying[M]. New York:Springer Science & Business Media,1998:1-120.
[18] HWANG S, NISHIMURA C, MC P G. Mechanical milling of magnesium powder[J]. Materials Science and Engineering:A, 2001, 318(1/2):22-33.
[19] YANG Q, GHOSH A K. Deformation behavior of ultrafine-grain(UFG) AZ31B Mg alloy at room temperature[J]. Acta Materialia, 2006, 54(19):5159-5170.
[20] GZYL M,ROSOCHOWSKI A,BOCZKAL S,et al.The role of microstructure and texture in controlling mechanical properties of AZ31B magnesium alloy processed by I-ECAP[J]. Materials Science and Engineering:A, 2015,638:20-29.
[1] 赵云松, 张迈, 郭小童, 郭媛媛, 赵昊, 刘砚飞, 姜华, 张剑, 骆宇时. 航空发动机涡轮叶片超温服役损伤的研究进展[J]. 材料工程, 2020, 48(9): 24-33.
[2] 甄睿, 方信贤, 皮锦红, 许恒源, 吴震. 热处理对Mg97.5Gd1.9Zn0.6合金组织与力学性能的影响[J]. 材料工程, 2020, 48(9): 132-137.
[3] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[4] 宿辉, 刘辉, 张春波. AZ91D镁合金表面环境友好直接化学镀镍工艺研究[J]. 材料工程, 2020, 48(8): 163-168.
[5] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[6] 唐大秀, 刘金云, 王玉欣, 尚杰, 刘钢, 刘宜伟, 张辉, 陈清明, 刘翔, 李润伟. 柔性阻变存储器材料研究进展[J]. 材料工程, 2020, 48(7): 81-92.
[7] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[8] 王彦菊, 姜嘉赢, 沙爱学, 李兴无. 新型高温合金材料建模及涡轮盘成形工艺模拟[J]. 材料工程, 2020, 48(7): 127-132.
[9] 赵强, 祝文卉, 邵天巍, 帅焱林, 刘佳涛, 王冉, 张利, 梁晓波. Ti-22Al-25Nb合金惯性摩擦焊接头显微组织与力学性能[J]. 材料工程, 2020, 48(6): 140-147.
[10] 李和奇, 王晓民, 曾宏燕. 热处理对FeCrMnNiCox合金微观组织及力学性能的影响[J]. 材料工程, 2020, 48(6): 170-175.
[11] 李淑文, 赵孔银, 陈康, 李金刚, 赵磊, 王晓磊, 魏俊富. TiO2共混丝朊接枝聚丙烯腈过滤膜制备及性能研究[J]. 材料工程, 2020, 48(3): 47-52.
[12] 赵新龙, 金鑫, 丁成成, 俞娟, 王晓东, 黄培. 热处理时间对聚甲基丙烯酰亚胺(PMI)泡沫结构和性能的影响[J]. 材料工程, 2020, 48(3): 53-58.
[13] 谢红梅, 蒋斌, 戴甲洪, 唐昌平, 李权, 潘复生. 石墨烯和氧化石墨烯水基润滑添加剂在镁合金冷轧中的摩擦学行为[J]. 材料工程, 2020, 48(3): 66-74.
[14] 叶寒, 黄俊强, 张坚强, 李聪聪, 刘勇. 纳米WC增强选区激光熔化AlSi10Mg显微组织与力学性能[J]. 材料工程, 2020, 48(3): 75-83.
[15] 姚小飞, 田伟, 李楠, 王萍, 吕煜坤. 铜导线表面热浸镀PbSn合金镀层的组织与性能[J]. 材料工程, 2020, 48(3): 148-154.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn