Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (1): 44-54    DOI: 10.11868/j.issn.1001-4381.2020.000254
  综述 本期目录 | 过刊浏览 | 高级检索 |
高熵非晶合金耐腐蚀性能研究进展
张舒研1,2, 高洋洋1, 张志彬2, 梁秀兵1,2, 王立忠1
1. 浙江大学 海洋学院, 浙江 舟山 316021;
2. 军事科学院 国防科技创新研究院, 北京 100071
Research progress in corrosion resistance of high-entropy metallic glasses
ZHANG Shu-yan1,2, GAO Yang-yang1, ZHANG Zhi-bin2, LIANG Xiu-bing1,2, WANG Li-zhong1
1. Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China;
2. National Innovation Institute of Defense Technology, Academy of Military Sciences of the PLA of China, Beijing 100071, China
全文: PDF(2343 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 高熵非晶合金是近年来发展起来的一种新型合金材料,因其兼具高熵合金和非晶合金优异的力学性能、耐腐蚀性能、磁性能等功能特性,引发了众多学者的广泛关注。本文简述了高熵非晶合金的含义与特点,介绍了高熵非晶材料的制备方法及组织与性能;归纳了该类材料的耐蚀机理与耐腐蚀性能的最新研究成果;展望了采用机器学习助力设计高熵非晶合金的新范式,并指出探究工况环境下的腐蚀失效机制、完善高熵非晶合金微观耐蚀机理与优化相关制备工艺是该材料广泛应用的前提条件。针对高熵非晶合金的开发及其耐腐蚀性开展的应用基础研究,将为我国海洋事业的"远洋化、深海化"提供先进的技术支撑和材料保障。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张舒研
高洋洋
张志彬
梁秀兵
王立忠
关键词 高熵非晶合金耐腐蚀性制备方法组织与性能    
Abstract:The high-entropy metallic glasses, as a new kind of alloyed materials, have attracted considerable attention due to its excellent mechanical, anti-corrosion and magnetic properties and so forth, which combines the advantages of high-entropy alloys and metallic glasses. Herein, a comprehensive understanding of the concepts and features of high-entropy metallic glasses was provided as well as its preparation methods, distinguished structure and performance characteristics. The recent developments in the corrosion resistance mechanism and anti-corrosion properties were summarized. A new paradigm of using machine learning to design high-entropy metallic glasses was prospected. It was also pointed out that the precondition to the extensive use of this sort of materials is to explore the corrosion failure mechanism under the working conditions, and to achieve the micro-corrosion resistance mechanism perfection and its preparation process optimization. At present, the applied basic research on the development of high-entropy metallic glasses and its corrosion resistance will provide advanced technical support and material guarantee for the "Marching into the deep ocean" of China’s marine industry.
Key wordshigh-entropy metallic glass    anti-corrosion property    preparation method    microstructure and property
收稿日期: 2020-03-25      出版日期: 2021-01-14
中图分类号:  TG178  
基金资助:国家重点研发计划项目(2018YFC1902400);国家自然科学基金项目(51975582)
通讯作者: 梁秀兵(1974-),男,研究员,博士生导师,主要从事新型功能材料设计与研究等相关工作,联系地址:北京市丰台区东大街53号院国防科技创新研究院(100071),E-mail:liangxb_d@163.com;王立忠(1969-),男,教授,博士生导师,研究方向为海洋岩土工程与软土力学,联系地址:浙江省舟山市定海区浙大路1号浙江大学海洋学院行政楼411室(316021),E-mail:wanglz@zju.edu.cn     E-mail: liangxb_d@163.com;wanglz@zju.edu.cn
引用本文:   
张舒研, 高洋洋, 张志彬, 梁秀兵, 王立忠. 高熵非晶合金耐腐蚀性能研究进展[J]. 材料工程, 2021, 49(1): 44-54.
ZHANG Shu-yan, GAO Yang-yang, ZHANG Zhi-bin, LIANG Xiu-bing, WANG Li-zhong. Research progress in corrosion resistance of high-entropy metallic glasses. Journal of Materials Engineering, 2021, 49(1): 44-54.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.000254      或      http://jme.biam.ac.cn/CN/Y2021/V49/I1/44
[1] ZHAO K, XIA X X, BAI H Y, et al. Room temperature homogeneous flow in a bulk metallic glass with low glass transition temperature[J]. Applied Physics Letters,2011,98(14):141913.
[2] TAKEUCHI A, CHEN N, WADA T, et al. Pd20Pt20 Cu20Ni20P20 high-entropy alloy as a bulk metallic glass in the centimeter[J]. Intermetallics,2011,19(10):1546-1554.
[3] KLEMENT W, WILLENS R H, DUWEZ P. Non-crystalline structure in solidified gold-silicon alloys[J]. Nature,1960, 187(4740):869-870.
[4] INOUE A. Stabilization of metallic supercooled liquid and bulk amorphous alloys[J]. Acta Materialia,2000,48(1):279-306.
[5] 汪卫华.非晶态物质的本质和特性[J].物理学进展,2013,33(5):177-351. WANG W H. The nature and properties of amorphous matter[J]. Progress in Physics,2013,33(5):177-351.
[6] YEH J W, CHEN S K, LIN S J, et al. Nanostructured high-entropy alloys with multiple principal elements:novel alloy design concepts and outcomes[J]. Advanced Engineering Materials,2004,6(5):299-303.
[7] MIRACLE D B, SENKOV O N. A critical review of high entropy alloys (HEAs) and related concepts[J]. Acta Materialia,2017,122:448-511.
[8] LI Z Z, ZHAO S T, RITCHIE R O, et al. Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys[J]. Progress in Materials Science, 2019,102:296-345.
[9] LI R X, ZHANG Y. Entropy and glass formation[J]. Acta Physica Sinica,2017,66(17):350-357.
[10] MA L Q, WANG L M, ZHANG T, et al.Bulk glass formation of Ti-Zr-Hf-Cu-M (M=Fe,Co,Ni) alloys[J]. Materials Transactions,2002,43(2):277-280.
[11] XING Q W, ZHANG Y. Amorphous phase formation rules in high-entropy alloys[J]. Chinese Physics B,2017,26(1):65-73.
[12] LI H F, XIE X H, ZHAO K, et al. In vitro and in vivo studies on biodegradable CaMgZnSrYb high-entropy bulk metallic glass[J]. Acta Biomaterialia,2013,9(10):8561-8573.
[13] CHENG C Y, YEH J W. High thermal stability of the amorphous structure of GexNbTaTiZr (x=0.5, 1) high-entropy alloys[J]. Materials Letters,2016,181:223-226.
[14] WANG Y, ZHANG K, FENG Y H, et al. Excellent irradiation tolerance and mechanical behaviors in high-entropy metallic glasses[J]. Journal of Nuclear Materials,2019,527:151785.
[15] HUO J T, WANG J Q, WANG W H. Denary high entropy metallic glass with large magnetocaloric effect[J]. Journal of Alloys and Compounds,2019,776:202-206.
[16] 姚可夫,丁红瑜.高熵非晶合金材料及其制备方法:ZL201310224674.5[P].2013-10-02. YAO K F, DING H Y. High entropy amorphous alloy material and its preparation method:ZL201310224674.5[P].2013-10-02.
[17] QI T L, LI Y H, TAKEUCHI A, et al. Soft magnetic Fe25Co25Ni25(B,Si)25 high entropy bulk metallic glasses[J]. Intermetallics,2015,66:8-12.
[18] WANG F, INOUE A, KONG F L,et al. Formation, thermal stability and mechanical properties of high entropy (Fe,Co,Ni,Cr,Mo)-B amorphous alloys[J]. Journal of Alloys and Compounds,2018,732:637-645.
[19] 董晓源,许晓飞,孙欢,等.一种具有高塑性的铁基软磁高熵非晶合金及其制备方法和应用:ZL201810122747.2[P].2018-08-03. DONG X Y, XU X F, SUN H,et al. The invention relates to an Fe-based soft magnetic high entropy amorphous alloy with high plasticity and its preparation and application:ZL201810122747.2[P].2018-08-03.
[20] WU J L, ZHOU Z Y, YANG H, et al. Structure related potential-upsurge during tensile creep of high entropy Al20Ce20La20Ni20Y20 metallic glass[J]. Journal of Alloys and Compounds,2020,827:154298.
[21] ZHAO S F, WANG H B, XIAO L, et al. High strain rate sensitivity of hardness in quinary Ti-Zr-Hf-Cu-Ni high entropy metallic glass thin films[J]. Physica E,2017,94:100-105.
[22] ZHAO Y Y, YE Y X, LIU C Z, et al. Tribological behavior of an amorphous Zr20Ti20Cu20Ni20Be20 high-entropy alloy studied using a nanoscratch technique[J]. Intermetallics, 2019,113:106561.
[23] ZHOU Q, DU Y, HAN W C, et al. Identifying the origin of strain rate sensitivity in a high entropy bulk metallic glass[J]. Scripta Materialia,2019,164:121-125.
[24] HUO J T, HUO L S, MEN H, et al. The magnetocaloric effect of Gd-Tb-Dy-Al-M (M=Fe, Co and Ni) high-entropy bulk metallic glasses[J]. Intermetallics,2015,58:31-35.
[25] LI J, XUE L, YANG W M, et al. Distinct spin glass behavior and excellent magnetocaloric effect in Er20Dy20Co20 Al20RE20 (RE=Gd, Tb and Tm) high-entropy bulk metallic glasses[J]. Intermetallics,2018,96:90-93.
[26] WU K N, LIU C, LI Q, et al. Magnetocaloric effect of Fe25Co25Ni25Mo5P10B10 high-entropy bulk metallic glass[J]. Journal of Magnetism and Magnetic Materials,2019,489:165404.
[27] DING H Y, YAO K F. High entropy Ti20Zr20Cu20Ni20Be20 bulk metallic glass[J]. Journal of Non-Crystalline Solids,2013,364:9-12.
[28] YANG X G, ZHOU Y, ZHU R H, et al. A novel, amorphous, non-equiatomic FeCrAlCuNiSi high-entropy alloy with exceptional corrosion resistance and mechanical properties[J]. Acta Metallurgica Sinica(English letters),2020,33:1057-1063.
[29] 徐轶,陈亚.一种用于3D打印的高熵合金非晶粉末及其制备方法:ZL201610090111.5[P].2016-04-27. XU Y, CHEN Y. A kind of high entropy alloy amorphous powder for 3D printing and its preparation method:ZL201610090111.5[P].2016-04-27.
[30] LI Y, WANG S, WANG X, et al. New FeNiCrMo(P, C, B) high-entropy bulk metallic glasses with unusual thermal stability and corrosion resistance[J].Journal of Materials Science & Technology,2020,42:32-39.
[31] DING H Y, SHAO Y, GONG P, et al. A senary TiZrHfCuNiBe high entropy bulk metallic glass with large glass-forming ability[J]. Materials Letters,2014,125:151-153.
[32] LIU J N, XING Z G, WANG H D, et al. Microstructure and fatigue damage mechanism of FeCoNiAlTiZr high-entropy alloy film by nanoscale dynamic mechanical analysis[J]. Vacuum,2019,159:516-523.
[33] BRAIC M, BRAIC V, BALACEANU M, et al. Characteristics of (TiAlCrNbY)C films deposited by reactive magnetron sputtering[J]. Surface and Coatings Technology, 2010,204(12/13):2010-2014.
[34] HSUEH H T, SHEN W J, TSAI M H, et al. Effect of nitrogen content and substrate bias on mechanical and corrosion properties of high-entropy films (AlCrSiTiZr)100-xNx[J]. Surface and Coatings Technology,2012,206(19/20):4106-4112.
[35] LIN C H, DUH J G, YEH J W. Multi-component nitride coatings derived from Ti-Al-Cr-Si-V target in RF magnetron sputter[J]. Surface and Coatings Technology,2007, 201(14):6304-6308.
[36] LAI C H, LIN S J, YEH J W, et al. Preparation and characterization of AlCrTaTiZr multi-element nitride coatings[J]. Surface and Coatings Technology,2006, 201(6):3275-3280.
[37] XIA Z H, ZHANG M, ZHANG Y, et al.Effects of Ni-P amorphous films on mechanical and corrosion properties of Al0.3CoCrFeNi high-entropy alloys[J].Intermetallics,2018,94:65-72.
[38] SHU F Y, LIU S, ZHAO H Y,et al.Structure and high-temperature property of amorphous composite coating synthesized by laser cladding FeCrCoNiSiB high-entropy alloy powder[J]. Journal of Alloys and Compounds, 2018,731:662-666.
[39] 陈伟,孙博,韩剑,等.高熵非晶合金涂层及其制备方法:CN201811653039.8[P].2019-03-08. CHEN W, SUN B, HAN J, et al. Preparation with amorphous and high-entropy coating:ZL201811653039.8[P].2019-03-08.
[40] ZHANG B, DUAN Y P, YANG X, et al. Tuning magnetic properties based on FeCoNiSi0.4Al0.4 with dual-phase nano-crystal and nano-amorphous microstructure[J]. Intermetallics,2020,117:106678.
[41] SANG L M, XU Y. Amorphous behavior of ZrxFeNiSi0.4B0.6high entropy alloys synthesized by mechanical alloying[J]. Journal of Non-Crystalline Solids,2020,530:119854.
[42] TAN Z, WANG L, XUE Y, et al. High-entropy alloy particle reinforced Al-based amorphous alloy composite with ultrahigh strength prepared by spark plasma sintering[J]. Materials & Design,2016,109:219-226.
[43] CAO D, WU Y, LI H X, et al. Beneficial effects of oxygen addition on glass formation in a high-entropy bulk metallic glass[J]. Intermetallics,2018,99:44-50.
[44] ZHAO K, JIAO W, MA J, et al. Formation and properties of strontium-based bulk metallic glasses with ultralow glass transition temperature[J]. Journal of Materials Research,2012,27(20):2593-2600.
[45] 席生岐,杨喜岗,周赟,等.一种高耐蚀的非晶高熵合金及其制备方法:CN201611066271.2[P].2017-05-31. XI S Q, YANG X G, ZHOU Y,et al. The invention related to an amorphous high entropy alloy with high corrosion resistance and a preparation method:CN201611066271.2[P].2017-05-31.
[46] LIU L, ZHU J B, HOU C, et al. Dense and smooth amorphous films of multicomponent FeCoNiCuVZrAl high-entropy alloy deposited by direct current magnetron sputtering[J]. Materials & Design,2013,46:675-679.
[47] SHU C Q, CHEN K, YANG H M, et al. Effect of V and ball milling time on microstructure and thermal properties of CoCrCuFeNiVx by mechanical alloying[J]. Physica B,2019,571:235-242.
[48] BILJAKOVIĆ K,REMENYI G, FIGUEROA I A, et al. Electronic structure and properties of (TiZrNbCu)1-xNix high entropy amorphous alloys[J]. Journal of Alloys and Compounds,2017,695:2661-2668.
[49] ZHENG S, CAI Z, PU J, et al. A feasible method for the fabrication of VAlTiCrSi amorphous high entropy alloy film with outstanding anti-corrosion property[J]. Applied Surface Science,2019,483:870-874.
[50] HAN Z H, WANG D Z, CHEN X H, et al. Characterization and properties of CuZrAITiNiSi high entropy alloy coating obtained by mechanical alloying and vacuum hot-pressing sintering[J]. JOM,2020,72(3):1254-1263.
[51] 余红雅,左建亮,刘仲武,等.一种耐高温耐腐蚀高熵非晶软磁合金及其制备方法:ZL201910180210.6[P].2019-06-25. YU H Y, ZUO J L, LIU Z W, et al. The invention relates to a high entropy amorphous alloys with soft magnetic, anti-high temperature and anti-corrosion and its preparation method:ZL201910180210.6[P].2019-06-25.
[52] DING J, INOUE A, HAN Y, et al. High entropy effect on structure and properties of (Fe,Co,Ni,Cr)-B amorphous alloys[J]. Journal of Alloys and Compounds, 2017,696:345-352.
[53] WANG W, LI B Y, ZHAI S C, et al. Alloying behavior and properties of FeSiBAlNiCox high entropy alloys fabricated by mechanical alloying and spark plasma sintering[J]. Metals and Materials International,2018,24:1112-1119.
[54] LIN C H, DUH J G. Corrosion behavior of (Ti-Al-Cr-Si-V)xN<i>y coatings on mild steels derived from RF magnetron sputtering[J]. Surface and Coatings Technology,2008,203(5/7):558-561.
[55] HUNG S B, WANG C J, CHEN Y Y, et al. Thermal and corrosion properties of V-Nb-Mo-Ta-W and V-Nb-Mo-Ta-W-Cr-B high entropy alloy coatings[J]. Surface and Coatings Technology,2019,375:802-809.
[56] 梁秀兵,范建文,张志彬,等.铝基非晶纳米晶复合涂层显微组织与腐蚀性能研究[J].金属学报,2018,54(8):1193-1203. LIANG X B, FAN J W, ZHANG Z B, et al. Microstructure and corrosion properties of aluminum base amorphous and nanocrystalline composite coating[J]. Acta Metallurgica Sinica,2018,54(8):1193-1203.
[57] 孙京丽,邹丹,金晶,等.三种常用不锈钢的耐局部腐蚀性能[J].材料研究学报,2017,31(9):665-671. SUN J L, ZOU D, JIN J, et al. Localized corrosion resistance of three commonly-used stainless steels[J]. Chinese Journal of Materials Research,2017,31(9):665-671.
[58] QIU X W. Corrosion behavior of Al2CrFeCoxCuNiTi high-entropy alloy coating in alkaline solution and salt solution[J]. Results in Physics,2019,12(3):1737-1741.
[59] CHENG J B, FENG Y, YAN C,et al. Development and characterization of Al-based amorphous coating[J]. JOM,2020,72(2):745-753.
[60] WANG H D, LIU J N, XING Z G,et al. Microstructure and corrosion behaviour of AlCoFeNiTiZr high-entropy alloy films[J]. Surface Engineering,2019,36(1):78-85.
[61] ZHANG W, TANG R,YANG Z B, et al. Preparation, structure, and properties of high-entropy alloy multilayer coatings for nuclear fuel cladding:a case study of AlCrMoNbZr/(AlCrMo-NbZr)N[J]. Journal of Nuclear Materials,2018,512:15-24.
[62] HUANG B, ZHANG C, ZHANG G, et al. Wear and corrosion resistant performance of thermal-sprayed Fe-based amorphous coatings:a review[J]. Surface and Coatings Technology,2019,377(15):124896.
[63] ZHANG G Y, ZHANG H, YUE S Q, et al. Preparation of non-magnetic and ductile Co-based bulk metallic glasses with high GFA and hardness[J]. Intermetallics,2019,107:47-52.
[64] XU T, PANG S J, ZHANG T.Glass formation, corrosion behavior, and mechanical properties of novel Cr-rich Cr-Fe-Mo-C-B-Y bulk metallic glasses[J]. Journal of Alloys and Compounds,2015,625:318-322.
[65] LUO H, LI Z, MINGERS A M, et al. Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy compared with 304 stainless steel in sulfuric acid solution[J]. Corrosion Science,2018,134:131-139.
[66] SHU F Y, ZHANG B L, LIU T, et al. Effects of laser power on microstructure and properties of laser cladded CoCrBFeNiSi high-entropy alloy amorphous coatings[J]. Surface and Coatings Technology,2019,358:667-675.
[67] RANGANATHAN S. Alloyed pleasures:multimetallic cocktails[J]. Current Science,2003,85(10):1404-1406.
[68] 滕庆,李帅,薛鹏举,等.激光选区熔化Inconel 718合金高温腐蚀性能[J].中国有色金属学报,2019,29(7):1417-1426. TENG Q, LI S, XUE P J, et al. High-temperature corrosion resistance of Inconel 718 fabricated by selective laser melting[J]. The Chinese Journal of Nonferrous Metals,2019,29(7):1417-1426.
[69] CUI Y, LI C J, LI J, et al. Characterization of FeCrAlY thin film deposited by magnetron sputtering and its corrosion resistance under high-temperature water vapor environment[J]. Surface Technology,2020,49(1):72-78.
[70] 陈思,周鑫,张豪,等.熔盐环境下热障涂层新材料Mg2SiO4的高温腐蚀研究[J].人工晶体学报,2019,48(8):1534-1538. CHEN S, ZHOU X, ZHANG H, et al. High-temperature corrosion behavior of novel material Mg2SiO4 for thermal barrier coatings in molten salt environment[J]. Journal of Synthetic Crystals,2019,48(8):1534-1538.
[71] ZHOU Q Y, SHEIKH S, OU P, et al. Corrosion behavior of Hf0.5Nb0.5Ta0.5Ti1.5Zr refractory high-entropy in aqueous chloride solutions[J]. Electrochemistry Communications,2019,98:63-68.
[72] ZHANG M N, ZHOU X L, YU X N, et al. Synthesis and characterization of refractory TiZrNbWMo high-entropy alloy coating by laser cladding[J]. Surface and Coatings Technology,2017,311:321-329.
[73] GUO Y X, LIU Q B. MoFeCrTiWAlNb refractory high-entropy alloy coating fabricated by rectangular-spot laser cladding[J]. Intermetallics,2018,102:78-87.
[74] ZHANG M, GONG P, LI N, et al. Oxidation behavior of a Ti16.7Zr16.7Hf16.7Cu16.7Ni16.7Be16.7 high-entropy bulk metallic glass[J]. Materials Letters,2019,236:135-138.
[75] ZHANG C, SONG A N, YUAN Y,et al. Study on the hydrogen storage properties of a TiZrNbTa high entropy alloy[J]. International Journal of Hydrogen Energy,2020,45(8):5367-5374.
[76] DING Q Q, ZHANG Y, CHEN X, et al. Tuning element distribution, structure and properties by composition in high-entropy alloys[J]. Nature,2019,574(7777):223-227.
[77] XU Y Q, BU Y Q, LIU J B, et al. In-situ high throughput synthesis of high-entropy alloys[J]. Scripta Materialia,2019,160:44-47.
[78] HU Q, GUO S, WANG J M, et al. Parametric study of amorphous high-entropy alloys formation from two new perspectives:atomic radius modification and crystalline structure of alloying elements[J]. Scientific Reports,2017,7:39917.
[79] 吴佳琦,孙奕韬,汪卫华,等.机器学习在非晶材料中的应用[J].中国科学:物理学力学天文学,2020,50(6):7-20. WU J Q, SUN Y T, WANG W H, et al. Application of machine learning approach in disordered materials[J]. SCIENTIA SINICA Physica,Mechanica & Astronomica,2020,50(6):7-20.
[80] WEN C, ZHANG Y, WANG C X, et al. Machine learning assisted design of high entropy alloys with desired property[J]. Acta Materialia, 2019, 170:109-117.
[81] DAI D B, XU T, WEI X, et al. Using machine learning and feature engineering to characterize limited material datasets of high-entropy alloys[J]. Computational Materials Science,2020,175:109618.
[1] 胡洁, 董中奇, 沈英明, 王杨, 杨俊雅. Mo元素对LaFe11.5Si1.5磁制冷材料耐腐蚀性能及磁性能的影响[J]. 材料工程, 2020, 48(8): 119-125.
[2] 王霞, 王辉, 侯丽, 蒋欢, 周雯洁. 超疏水防腐蚀涂层的研究进展[J]. 材料工程, 2020, 48(6): 73-81.
[3] 邓运来, 邓舒浩, 叶凌英, 林森, 孙琳, 吉华. 焊后热处理对AA7204-T4铝合金搅拌摩擦焊接头组织与力学性能的影响[J]. 材料工程, 2020, 48(4): 131-138.
[4] 陈振, 张增志, 丛中卉, 王立宁, 吴浩平. 开孔型聚合物发泡材料的研究及应用进展[J]. 材料工程, 2020, 48(3): 1-9.
[5] 姚小飞, 田伟, 李楠, 王萍, 吕煜坤. 铜导线表面热浸镀PbSn合金镀层的组织与性能[J]. 材料工程, 2020, 48(3): 148-154.
[6] 王玉洁, 张鹏, 王选, 杜云慧, 王胜林, 张伟一, 鹿红梅. 氧气流量对LY12铝合金微弧氧化膜致密性的影响[J]. 材料工程, 2019, 47(5): 86-92.
[7] 王瑶, 赵雪妮, 党新安, 杨璞, 魏森森, 张伟刚, 刘庆瑶. 钢表面梯度结构耐腐蚀铝涂层的制备及研究[J]. 材料工程, 2019, 47(11): 148-154.
[8] 张丹丹, 沈洪雷, 曹霞, 叶煜松, 张啸, 叶历, 王梦秋. 石墨烯增强金属基航空复合材料研究进展[J]. 材料工程, 2019, 47(1): 1-10.
[9] 李莹莹, 王昉, 刘其春, 张东敏, 张雪, 马青玉, 顾正桂. 丝素蛋白及其复合材料的研究进展[J]. 材料工程, 2018, 46(8): 14-26.
[10] 王匀, 陈英箭, 许桢英, 唐书浩. 基体表面粗糙度对热丝TIG堆焊Inconel625组织和耐腐蚀性能的影响[J]. 材料工程, 2018, 46(7): 94-99.
[11] 孙伟, 朱立群, 李卫平, 刘慧丛. 硅溶胶改性水性丙烯酸树脂对镀锌三价铬钝化膜的封闭作用[J]. 材料工程, 2018, 46(12): 110-116.
[12] 许健, 竺培显, 韩朝辉, 曹勇, 周生刚. 表面处理对碳纤维基β-PbO2电极性能的影响[J]. 材料工程, 2018, 46(1): 125-132.
[13] 崔贺帅, 郑彧, 刘杏娥, 杨淑敏, 田根林, 马建锋. 生物质基SiC陶瓷制备的研究进展[J]. 材料工程, 2017, 45(8): 115-122.
[14] 王询, 林建平, 万海浪. 铝合金表面特性对其胶接性能影响的研究进展[J]. 材料工程, 2017, 45(8): 123-131.
[15] 胡圣飞, 魏文闵, 刘清亭, 张荣. 超临界流体剥离制备石墨烯研究进展[J]. 材料工程, 2017, 45(3): 28-34.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn