Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (8): 11-25    DOI: 10.11868/j.issn.1001-4381.2020.000380
  综述 本期目录 | 过刊浏览 | 高级检索 |
钛合金在骨科植入领域的研究进展
刘剑桥1, 刘佳1, 唐毓金1, 王立强2
1. 右江民族医学院附属医院, 广西 百色 533000;
2. 上海交通大学 材料科学与工程学院 金属基复合材料国家重点实验室, 上海 200240
Research progress in titanium alloy in the field of orthopaedic implants
LIU Jian-qiao1, LIU Jia1, TANG Yu-jin1, WANG Li-qiang2
1. Affliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China;
2. State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
全文: PDF(8424 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 钛合金具有良好的生物相容性,同时相比传统植入物金属材料有较低的弹性模量,在生物环境下具有良好的抗腐蚀性能,这些优异的性能使钛合金作为医用植入物材料备受青睐。钛及钛合金作为医用植入物材料在临床中得到广泛应用。在不同的临床应用过程中,植入物材料常因金属的降解、与骨的生长融合、抗菌等因素,而对材料本身的性能有着不同的要求。因此,制备具有优异综合性能的钛合金材料以满足临床需求是科研工作者当前面临的重要问题。本文系统介绍了医用钛合金材料的结构、性能特点及目前在骨科应用方向的研究现状,在未来研究中,将通过改变元素组成、增加表面改性、优化生产工艺等方式,使钛合金材料能够以优异的综合性能更好地服务于人类。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘剑桥
刘佳
唐毓金
王立强
关键词 钛合金骨科骨科植入物材料性能    
Abstract:Owing to the excellent biocompatibility and corrosion resistance of titanium and its alloys in the biological environments, they are one of the best materials in the medical implant applications. Moreover, it has a lower elastic modulus (comparable to bone) than traditional metal implant materials which is an influential property due to the stress-shielding effect. There are some requirements for implant materials according to their clinical use and the periphery tissues. Hence, some factors should be considered, such as metal degradation, toxicity issues, surface characteristics, biocompatibility, and fusion with bone. Considering the above-mentioned information, titanium material design with superior performance to meet the essential clinical needs is an important challenge and attracts much attention from the academicians in the biomaterial field. This paper discusses the structural and performance characteristics of medical titanium alloys and the current research status in the direction of orthopedic applications. Furthermore, in future research, through changing the elemental composition, increasing the surface modification, and optimizing the production process, titanium alloy materials could have the excellent comprehensive performance to serve human beings better.
Key wordstitanium alloy    orthopedics    orthopedic implant    material property
收稿日期: 2020-04-28      出版日期: 2021-08-12
中图分类号:  R687.1  
基金资助:右江民族医学院附属医院高层次人才科研项目(R20196301,R20196306)
通讯作者: 王立强(1980-),男,副研究员,博士,研究方向:生物医用钛合金和钛基复合材料的制备、加工和分析,联系地址:上海市闵行区东川路800号上海交通大学金属基复合材料国家重点实验室(200240),E-mail:wang_liqiang@sjtu.edu.cn;唐毓金(1966-),男,教授,博士,研究方向:股骨头缺血性坏死的阶梯性个体化治疗和基因分子水平研究,脊柱相关疾病的基础及临床研究,骨肿瘤基础及临床研究,联系地址:广西壮族自治区百色市中山二路18号右江民族医学院附属医院(533000),E-mail:tangyujin1967@163.com     E-mail: wang_liqiang@sjtu.edu.cn;tangyujin1967@163.com
引用本文:   
刘剑桥, 刘佳, 唐毓金, 王立强. 钛合金在骨科植入领域的研究进展[J]. 材料工程, 2021, 49(8): 11-25.
LIU Jian-qiao, LIU Jia, TANG Yu-jin, WANG Li-qiang. Research progress in titanium alloy in the field of orthopaedic implants. Journal of Materials Engineering, 2021, 49(8): 11-25.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.000380      或      http://jme.biam.ac.cn/CN/Y2021/V49/I8/11
[1] PARK J B, BRONZINO J D.Biomaterials:principles and applications[M]. New York:Chemical Rubber Company Press, 2002.
[2] KARGOZAR S, RAMAKRISHNA S, MOZAFARI M.Chemistry of biomaterials:future prospects[J]. Current Opinion in Biomedical Engineering, 2019, 10:181-190.
[3] FROST H M.A 2003 update of bone physiology and Wolff's Law for clinicians[J]. The Angle Orthodontist, 2004, 74(1): 3-15.
[4] COSTA B C, TOKUHARA C K, ROCHA L A, et al.Vanadium ionic species from degradation of Ti-6Al-4V metallic implants:in vitro cytotoxicity and speciation evaluation[J]. Materials Science and Engineering:C, 2019, 96:730-739.
[5] 刘理, 刘军.钒:一种具有非典型生物学意义的元素[J]. 国外医学(医学地理分册), 2006(3): 114-116. LIU L, LIU J.Vanadium:an element with atypical biological significance[J]. Foreign Medical Sciences (Section of Medgeography), 2006(3): 114-116.
[6] ZHANG Y, GUO T, LI Z.The researches on titanium and titanium alloy in dental use[J]. Journal of Biomedical Engineering, 2000, 17(2): 206-208.
[7] 樊晓霞, 任浩浩, 陈抒天, 等.不同来源天然骨磷灰石的材料学性能比较研究[J]. 生物医学工程学杂志, 2014, 31(2): 352-356. FAN X X, REN H H, CHEN S T, et al.Comparative studies on the material performances of natural bone-like apatite from different bone sources[J]. Journal of Biomedical Engineering, 2014, 31(2): 352-356.
[8] PÉREZ D A G, JORGE Jr A M, ROCHE V, et al.Severe plastic deformation and different surface treatments on the biocompatible Ti13Nb13Zr and Ti35Nb7Zr5Ta alloys:microstructural and phase evolutions, mechanical properties, and bioactivity analysis[J]. Journal of Alloys and Compounds, 2020, 812:152116.
[9] BIESIEKIERSKI A, LIN J, LI Y, et al.Impact of ruthenium on mechanical properties, biological response and thermal processing of β-type Ti-Nb-Ru alloys[J]. Acta Biomaterialia, 2017, 48:461-467.
[10] LI X, YE S, YUAN X, et al.Fabrication of biomedical Ti-24Nb-4Zr-8Sn alloy with high strength and low elastic modulus by powder metallurgy[J]. Journal of Alloys and Compounds, 2019, 772:968-977.
[11] KARRE R, KODLI B K, RAJENDRAN A, et al.Comparative study on Ti-Nb binary alloys fabricated through spark plasma sintering and conventional P/M routes for biomedical application[J]. Materials Science and Engineering:C, 2019, 94:619-627.
[12] JAWED S F, RABADIA C D, LIU Y J, et al.Mechanical characterization and deformation behavior of β-stabilized Ti-Nb-Sn-Cr alloys[J]. Journal of Alloys and Compounds, 2019, 792:684-693.
[13] VIEIRA N A R, BORBOREMA S, ARAJO L S, et al.Influence of thermo-mechanical processing on structure and mechanical properties of a new metastable β Ti-29Nb-2Mo-6Zr alloy with low Young's modulus[J]. Journal of Alloys and Compounds, 2020, 820:153078.
[14] OZAN S, LI Y, LIN J, et al.Microstructural evolution and its influence on the mechanical properties of a thermomechanically processed β Ti-32Zr-30Nb alloy[J]. Materials Science and Engineering:A, 2018, 719:112-123.
[15] BAHL S, KRISHNAMURTHY A S, SUWAS S, et al.Controlled nanoscale precipitation to enhance the mechanical and biological performances of a metastable β Ti-Nb-Sn alloy for orthopedic applications[J]. Materials & Design, 2017, 126:226-237.
[16] CHEN J, MA F, LIU P, et al.Effects of different processing conditions on super-elasticity and low modulus properties of metastable β-type Ti-35Nb-2Ta-3Zr alloy[J]. Vacuum, 2017, 146:164-169.
[17] ZHANG T, FAN Q, MA X, et al.Effect of laser remelting on microstructural evolution and mechanical properties of Ti-35Nb-2Ta-3Zr alloy[J]. Materials Letters, 2019, 253:310-313.
[18] KANG N, LIN X, MANSORI M E, et al.On the effect of the thermal cycle during the directed energy deposition application to the in-situ production of a Ti-Mo alloy functionally graded structure[J]. Additive Manufacturing, 2020, 31:100911.
[19] CORREA D R N, KURODA P A B, LOURENÇO M L, et al.Microstructure and selected mechanical properties of aged Ti-15Zr-based alloys for biomedical applications[J]. Materials Science and Engineering:C, 2018, 91:762-771.
[20] KURODA P A B, LOURENÇO M L, CORREA D R N, et al.Thermomechanical treatments influence on the phase composition, microstructure, and selected mechanical properties of Ti-20Zr-Mo alloys system for biomedical applications[J]. Journal of Alloys and Compounds, 2020, 812:152108.
[21] EHTEMAM-HAGHIGHI S, CAO G, ZHANG L.Nanoindentation study of mechanical properties of Ti based alloys with Fe and Ta additions[J]. Journal of Alloys and Compounds, 2017, 692:892-897.
[22] EISENBARTH E, VELTEN D, MÜLLER M, et al.Biocompatibility of β-stabilizing elements of titanium alloys[J]. Biomaterials, 2004, 25(26): 5705-5713.
[23] 刘辉, 杨冠军, 于振涛, 等.生物医用多孔钛合金材料的制备[J]. 钛工业进展, 2010, 27(1): 9-15. LIU H, YANG G J, YU Z T, et al.Preparation of porous titanium alloy materials for biomedical application[J]. Titanium Industry Progress, 2010, 27(1): 9-15.
[24] NI J, LING H, ZHANG S, et al.Three-dimensional printing of metals for biomedical applications[J]. Materials Today Bio, 2019, 3:100024.
[25] TAO S C, XU J L, YUAN L, et al.Microstructure, mechanical properties and antibacterial properties of the microwave sintered porous Ti-3Cu alloys[J]. Journal of Alloys and Compounds, 2020, 812:152142.
[26] ZHANG L, TAN J, MENG Z D, et al.Low elastic modulus Ti-Ag/Ti radial gradient porous composite with high strength and large plasticity prepared by spark plasma sintering[J]. Materials Science and Engineering:A, 2017, 688:330-337.
[27] ZHANG L, HE Z Y, TAN J, et al.Designing a multifunctional Ti-2Cu-4Ca porous biomaterial with favorable mechanical properties and high bioactivity[J]. Journal of Alloys and Compounds, 2017, 727:338-345.
[28] XU W, TIAN J, LIU Z, et al.Novel porous Ti35Zr28Nb scaffolds fabricated by powder metallurgy with excellent osteointegration ability for bone-tissue engineering applications[J]. Materials Science and Engineering:C, 2019, 105:110015.
[29] MEENASHISUNDARAM G K, WANG N, MASKOMANI S, et al.Fabrication of Ti +Mg composites by three-dimensional printing of porous Ti and subsequent pressureless infiltration of biodegradable Mg[J]. Materials Science and Engineering:C, 2020, 108:110478.
[30] KELLY C N, EVANS N T, IRVIN C W, et al.The effect of surface topography and porosity on the tensile fatigue of 3D printed Ti-6Al-4V fabricated by selective laser melting[J]. Materials Science and Engineering:C, 2019, 98:726-736.
[31] WANG H, SU K, SU L, et al.Comparison of 3D-printed porous tantalum and titanium scaffolds on osteointegration and osteogenesis[J]. Materials Science and Engineering:C, 2019, 104:109908.
[32] BARUI S, PANDA A K, NASKAR S, et al.3D inkjet printing of biomaterials with strength reliability and cytocompatibility:quantitative process strategy for Ti-6Al-4V[J]. Biomaterials, 2019, 213:119212.
[33] GUO Y, TAN Y, LIU Y, et al.Low modulus and bioactive Ti/α-TCP/Ti-mesh composite prepared by spark plasma sintering[J]. Materials Science and Engineering:C, 2017, 80:197-206.
[34] GUO Y, CHEN D, LU W, et al.Corrosion resistance and in vitro response of a novel Ti35Nb2Ta3Zr alloy with a low Young's modulus[J]. Biomed Mater, 2013, 8(5): 55004.
[35] SHI L, SHI L, WANG L, et al.The improved biological performance of a novel low elastic modulus implant[J]. PLoS One, 2013, 8(2): 55015.
[36] NUNE K C, MISRA R D K, LI S J, et al.Osteoblast cellular activity on low elastic modulus Ti-24Nb-4Zr-8Sn alloy[J]. Dental Materials, 2017, 33(2): 152-165.
[37] ZHAN X, LI S, CUI Y, et al.Comparison of the osteoblastic activity of low elastic modulus Ti-24Nb-4Zr-8Sn alloy and pure titanium modified by physical and chemical methods[J]. Materials Science and Engineering:C, 2020, 113:111018.
[38] MAHLOOJI E, ATAPOUR M, LABBAF S.Electrophoretic deposition of bioactive glass-chitosan nanocomposite coatings on Ti-6Al-4V for orthopedic applications[J]. Carbohydrate Polymers, 2019, 226:115299.
[39] SINGH S, SINGH G, BALA N.Electrophoretic deposition of hydroxyapatite-iron oxide-chitosan composite coatings on Ti-13Nb-13Zr alloy for biomedical applications[J]. Thin Solid Films, 2020, 697:137801.
[40] SRIMANEEPONG V, ROKAYA D, THUNYAKITPISAL P, et al.Corrosion resistance of graphene oxide/silver coatings on Ni-Ti alloy and expression of IL-6 and IL-8 in human oral fibroblasts[J]. Sci Rep, 2020, 10(1): 3247.
[41] CHELLAPPA M, VIJAYALAKSHMI U.Electrophoretic deposition of silica and its composite coatings on Ti-6Al-4V, and its in vitro corrosion behaviour for biomedical applications[J]. Materials Science and Engineering:C, 2017, 71:879-890.
[42] HE D, ZHENG S, PU J, et al.Improving tribological properties of titanium alloys by combining laser surface texturing and diamond-like carbon film[J]. Tribology International, 2015, 82:20-27.
[43] ALEXEEV A M, ISMAGILOV R R, OBRAZTSOV A N.Structural and morphological peculiarities of needle-like diamond crystallites obtained by chemical vapor deposition[J]. Diamond and Related Materials, 2018, 87:261-266.
[44] YANG W, GAO Y, GUO P, et al.Adhesion, biological corrosion resistance and biotribological properties of carbon films deposited on MAO coated Ti substrates[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 101:103448.
[45] MALHOTRA R, HAN Y M, MORIN J, et al.Inhibiting corrosion of biomedical-grade Ti-6Al-4V alloys with graphene nanocoating[J]. J Dent Res, 2020, 99(3): 285-292.
[46] GAO M, WU X, GAO P, et al.Properties of hydrophobic carbon-PTFE composite coating with high corrosion resistance by facile preparation on pure Ti[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(11): 2321-2330.
[47] KRISHNA N G, GEORGE R P, PHILIP J.Anomalous enhancement of corrosion resistance and antibacterial property of commercially pure titanium (CP-Ti) with nanoscale rutile titania film[J]. Corrosion Science, 2020, 172:108678.
[48] BONU V, JEEVITHA M, PRAVEEN KUMAR V, et al.Solid particle erosion and corrosion resistance performance of nanolayered multilayered Ti/TiN and TiAl/TiAlN coatings deposited on Ti6Al4V substrates[J]. Surface and Coatings Technology, 2020, 387:125531.
[49] KIM H K, HAN H S, LEE K S, et al.Comprehensive study on the roles of released ions from biodegradable Mg-5wt% Ca-1wt% Zn alloy in bone regeneration[J]. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11(10): 2710-2724.
[50] ABDAL-HAY A, AGOUR M, KIM Y, et al.Magnesium-particle/polyurethane composite layer coating on titanium surfaces for orthopedic applications[J]. European Polymer Journal, 2019, 112:555-568.
[51] ZHANG M, HUANG X, HANG R, et al.Effect of a biomimetic titania mesoporous coating doped with Sr on the osteogenic activity[J]. Materials Science and Engineering:C, 2018, 91:153-162.
[52] WANG T, QIAN S, ZHA G, et al.Synergistic effects of titania nanotubes and silicon to enhance the osteogenic activity[J]. Colloids and Surfaces B, 2018, 171:419-426.
[53] LI T, LI X, HU S, et al.Enhanced osteoporotic effect of silicon carbide nanoparticles combine with nano-hydroxyapatite coated anodized titanium implant on healthy bone regeneration in femoral fracture[J]. Journal of Photochemistry and Photobiology B, 2019, 197:111515.
[54] TAO B, DENG Y, SONG L, et al.BMP2-loaded titania nanotubes coating with pH-responsive multilayers for bacterial infections inhibition and osteogenic activity improvement[J]. Colloids and Surfaces B, 2019, 177:242-252.
[55] HE Y, MU C, SHEN X, et al.Peptide LL-37 coating on micro-structured titanium implants to facilitate bone formation in vivo via mesenchymal stem cell recruitment[J]. Acta Biomaterialia, 2018, 80:412-424.
[56] CHEN M, HU Y, LI M, et al.Regulation of osteoblast differentiation by osteocytes cultured on sclerostin antibody conjugated TiO2 nanotube array[J]. Colloids and Surfaces B, 2019, 175:663-670.
[57] WAN C, GILBERT S R, WANG Y, et al.Activation of the hypoxia-inducible factor-1α pathway accelerates bone regeneration[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(2): 686-691.
[58] LI J, FAN L, YU Z, et al.The effect of deferoxamine on angiogenesis and bone repair in steroid-induced osteonecrosis of rabbit femoral heads[J]. Experimental Biology and Medicine, 2015, 240(2): 273-280.
[59] RAN Q, YU Y, CHEN W, et al.Deferoxamine loaded titania nanotubes substrates regulate osteogenic and angiogenic differentiation of MSCs via activation of HIF-1α signaling[J]. Materials Science and Engineering:C, 2018, 91:44-54.
[60] MU C, HU Y, HUANG L, et al.Sustained raloxifene release from hyaluronan-alendronate-functionalized titanium nanotube arrays capable of enhancing osseointegration in osteoporotic rabbits[J]. Materials Science and Engineering:C, 2018, 82:345-353.
[61] SOUZA J C M, SORDI M B, KANAZAWA M, et al.Nano-scale modification of titanium implant surfaces to enhance osseointegration[J]. Acta Biomaterialia, 2019, 94:112-131.
[62] BRAMMER K S, FRANDSEN C J, JIN S.TiO2 nanotubes for bone regeneration[J]. Trends in Biotechnology, 2012, 30(6): 315-322.
[63] SHIN Y C, PANG K, HAN D, et al.Enhanced osteogenic differentiation of human mesenchymal stem cells on Ti surfaces with electrochemical nanopattern formation[J]. Materials Science and Engineering:C, 2019, 99:1174-1181.
[64] HUANG Y, HE S, GUO Z, et al.Nanostructured titanium surfaces fabricated by hydrothermal method:influence of alkali conditions on the osteogenic performance of implants[J]. Materials Science and Engineering:C, 2019, 94:1-10.
[65] LI J, MUTREJA I, TREDINNICK S, et al.Hydrodynamic control of titania nanotube formation on Ti-6Al-4V alloys enhances osteogenic differentiation of human mesenchymal stromal cells[J]. Materials Science and Engineering:C, 2020, 109:110562.
[66] HUANG C, LIU H, LIU R, et al.Simulation study of effects of Ti content on microstructure evolution and elastic constants of immiscible Mg-Ti alloys during rapid quenching process[J]. Materials Letters, 2018, 220:253-256.
[67] 孙彩红, 武敏, 安博.B2型TiSi合金点缺陷结构和力学性能的第一性原理研究[J]. 井冈山大学学报(自然科学版), 2014, 35(6): 77-80. SUN C H, WU M, AN B.First-principle study on the point defective structures and mechanical property of B2-TiSi alloy[J]. Journal of Jinggangshan University(Natural Science), 2014, 35(6): 77-80.
[68] TANG S, ZHENG J.Antibacterial activity of silver nanoparticles:structural effects[J]. Advanced Healthcare Materials, 2018, 7(13): 1701503.
[69] PARK H, KIM J Y, KIM J, et al.Silver-ion-mediated reactive oxygen species generation affecting bactericidal activity[J]. Water Research, 2009, 43(4): 1027-1032.
[70] RAUF A, YE J, ZHANG S, et al.Copper(ii)-based coordination polymer nanofibers as a highly effective antibacterial material with a synergistic mechanism[J]. Dalton Transactions, 2019, 48(48): 17810-17817.
[71] TRIPATHI B N, GAUR J P.Relationship between copper- and zinc-induced oxidative stress and proline accumulation in scenedesmus sp[J]. Planta, 2004, 219(3), 397-404.
[72] PRADO-PRONE G, SILVA-BERMUDEZ P, ALMAGUER-FLORES A, et al.Enhanced antibacterial nanocomposite mats by coaxial electrospinning of polycaprolactone fibers loaded with Zn-based nanoparticles[J]. Nanomedicine, 2018, 14(5): 1695-1706.
[73] YU F, FANG X, JIA H, et al.Zn or O? an atomic level comparison on antibacterial activities of zinc oxides[J]. Chemistry-A European Journal, 2016, 22(24): 8053-8058.
[74] SARRAF M, DABBAGH A, ABDUL RAZAK B, et al.Silver oxide nanoparticles-decorated tantala nanotubes for enhanced antibacterial activity and osseointegration of Ti6Al4V[J]. Materials & Design, 2018, 154:28-40.
[75] YUAN Z, LIU P, HAO Y, et al.Construction of Ag-incorporated coating on Ti substrates for inhibited bacterial growth and enhanced osteoblast response[J]. Colloids and Surfaces B, 2018, 171:597-605.
[76] LEI Z, ZHANG H, ZHANG E, et al.Antibacterial activities and biocompatibilities of Ti-Ag alloys prepared by spark plasma sintering and acid etching[J]. Materials Science and Engineering:C, 2018, 92:121-131.
[77] HUANG Q, LI X, ELKHOOLY T A, et al.The Cu-containing TiO2 coatings with modulatory effects on macrophage polarization and bactericidal capacity prepared by micro-arc oxidation on titanium substrates[J]. Colloids and Surfaces B, 2018, 170:242-250.
[78] SHI M, CHEN Z, FARNAGHI S, et al.Copper-doped mesoporous silica nanospheres, a promising immunomodulatory agent for inducing osteogenesis[J]. Acta Biomaterialia, 2016, 30:334-344.
[79] HUANG Q, OUYANG Z, TAN Y, et al.Activating macrophages for enhanced osteogenic and bactericidal performance by Cu ion release from micro/nano-topographical coating on a titanium substrate[J]. Acta Biomaterialia, 2019, 100:415-426.
[80] WANG J, ZHANG S, SUN Z, et al, Optimization of mechanical property, antibacterial property and corrosion resistance of Ti-Cu alloy for dental implant[J]. Journal of Materials Science & Technology, 2019, 35(10): 2336-2344.
[81] DENG C, SHEN X, YANG W, et al.Construction of zinc-incorporated nano-network structures on a biomedical titanium surface to enhance bioactivity[J]. Applied Surface Science, 2018, 453:263-270.
[82] FATHI M, AKBARI B, TAHERIAZAM A.Antibiotics drug release controlling and osteoblast adhesion from titania nanotubes arrays using silk fibroin coating[J]. Materials Science and Engineering:C, 2019, 103:109743.
[83] DAVID N, NALLAIYAN R.Biologically anchored chitosan/gelatin-SrHAP scaffold fabricated on titanium against chronic osteomyelitis infection[J]. International Journal of Biological Macromolecules, 2018, 110:206-214.
[84] LIU P, HAO Y, ZHAO Y, et al.Surface modification of titanium substrates for enhanced osteogenetic and antibacterial properties[J]. Colloids and Surfaces B, 2017, 160:110-116.
[85] LEE J S, LEE S J, YANG S B, et al.Facile preparation of mussel-inspired antibiotic-decorated titanium surfaces with enhanced antibacterial activity for implant applications[J]. Applied Surface Science, 2019, 496:143675.
[86] BANDARA C D, SINGH S, AFARA I O, et al.Bactericidal effects of natural nanotopography of dragonfly wing on escherichia coli[J]. ACS Applied Materials & Interfaces, 2017, 9(8): 6746-6760.
[87] BHADRA C M, KHANH TRUONG V, PHAM V T H, et al.Antibacterial titanium nano-patterned arrays inspired by dragonfly wings[J]. Scientific Reports, 2015, 5(1): 16817.
[88] SJÖSTRÖM T, NOBBS A H, SU B.Bactericidal nanospike surfaces via thermal oxidation of Ti alloy substrates[J]. Materials Letters, 2016, 167:22-26.
[89] LINKLATER D P, JUODKAZIS S, CRAWFORD R J, et al.Mechanical inactivation of staphylococcus aureus and pseudomonas aeruginosa by titanium substrata with hierarchical surface structures[J]. Materialia, 2019, 5:100197.
[1] 王庆娟, 吴金城, 王伟, 杜忠泽, 尹仁锟. 超高强β钛合金等温相转变特性及力学性能[J]. 材料工程, 2021, 49(9): 94-100.
[2] 武永丽, 熊毅, 陈正阁, 查小琴, 岳赟, 刘玉亮, 张金民, 任凤章. 超音速微粒轰击对TC11钛合金组织和疲劳性能的影响[J]. 材料工程, 2021, 49(5): 137-143.
[3] 覃鑫, 祁文军, 左小刚. TC4钛合金表面激光熔覆NiCrCoAlY-Cr3C2复合涂层的摩擦和高温抗氧化性能[J]. 材料工程, 2021, 49(12): 107-114.
[4] 甘致聪, 王硕, 山圣峰, 张兵, 贾元智, 马明臻. 微量硼对Ti-Fe-Cu-Sn-Nb合金力学性能的影响[J]. 材料工程, 2021, 49(11): 156-162.
[5] 周亚利, 杨秋月, 张文玮, 刘田文, 何威, 吴珍, 伍铭, 谭元标. 具有层片状α相组织的TB8钛合金热变形行为及本构方程[J]. 材料工程, 2021, 49(1): 75-81.
[6] 顾善群, 张代军, 刘燕峰, 邹齐, 陈祥宝, 李军, 付善龙. 聚酰亚胺纤维/双马树脂复合材料抗高速冲击性能[J]. 材料工程, 2021, 49(1): 119-125.
[7] 王欣, 许春玲, 李臻熙, 裴传虎, 汤智慧. 喷丸强度和表面覆盖率对TC4钛合金室温疲劳性能的影响[J]. 材料工程, 2020, 48(9): 138-143.
[8] 朱鸿昌, 罗军明, 朱知寿. TB17钛合金β相区动态再结晶行为及转变机理[J]. 材料工程, 2020, 48(2): 108-113.
[9] 钦兰云, 何晓娣, 李明东, 杨光, 高博文. 退火处理对激光沉积制造TC4钛合金组织及力学性能影响[J]. 材料工程, 2020, 48(2): 148-155.
[10] 元云岗, 康嘉杰, 岳文, 付志强, 朱丽娜, 佘丁顺, 王成彪. 不同温度下等离子渗氮后TC4钛合金的摩擦磨损性能[J]. 材料工程, 2020, 48(2): 156-162.
[11] 信云鹏, 朱知寿, 王新南, 商国强, 祝力伟, 李明兵, 李静, 刘格辰. 应变率对TB17钛合金亚稳β晶粒变形机制的影响[J]. 材料工程, 2020, 48(12): 141-147.
[12] 卢轶榕, 郑华勇, 陈秀华, 汪海. 三维机织复合材料/钛合金混杂板缝合连接剪切失效机理[J]. 材料工程, 2020, 48(11): 162-169.
[13] 李新星, 王红侠, 施剑峰, 韩伯群. TC11钛合金表面保护性摩擦氧化层的形成及作用[J]. 材料工程, 2020, 48(10): 141-147.
[14] 何代华, 朱威, 刘翔, 刘平. 硅酸钙及硅酸钠浓度对钛合金表面生物活性涂层的影响[J]. 材料工程, 2020, 48(10): 148-156.
[15] 李晓红, 张彦华, 李赞, 李菊, 张田仓. 热处理温度对TC17(α+β)/TC17(β)钛合金线性摩擦焊接头组织及力学性能的影响[J]. 材料工程, 2020, 48(1): 115-120.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn