Hot deformation behavior and its effect on microstructure evolution of aluminum cladded 7B04 composite sheet
Lu YANG1, Min CAO2(), Ling-fei CAO3, Bin LIAO3, Zheng-an WANG1
1 Southwest Aluminum(Group) Co., Ltd., Chongqing 401326, China 2 Equipment Research and Development Center, Beijing 100000, China 3 College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
Hot compression properties of aluminium cladded 7B04 composite sheets were investigated by thermal simulation testing at the deformation temperatures of 380-450 ℃ and strain rates of 0.1-30 s-1. The results show that the instability zone of hot processing map gradually expands to the region of high strain rates with the increase of true strains. The most suitable hot working zone is at the temperature range of 380-410 ℃ and strain rate of 5-30 s-1. Electron backscattered diffraction (EBSD) technique was employed to study the deformed microstructure. The results show that the recrystallized grains tend to have flat boundaries and the orientation difference between grain boundaries increases gradually with the increase of temperature and the decrease of strain rate. During deformation, the Al-clad layer shows mainly continuous dynamic recrystallization, while discontinuous dynamic recrystallization and continuous dynamic recrystallization (including geometric dynamic recrystallization) co-exist in the 7B04 matrix. The optimal hot deformation temperature of materials are 410 ℃ at the strain rate of 10 s-1, at this moment, the grain size of both 7B04 matrix and Al cladding is close and small.
杨璐, 曹敏, 曹玲飞, 廖斌, 王正安. 7B04包铝复合板热变形行为及其对组织演变的影响[J]. 材料工程, 2021, 49(3): 78-86.
Lu YANG, Min CAO, Ling-fei CAO, Bin LIAO, Zheng-an WANG. Hot deformation behavior and its effect on microstructure evolution of aluminum cladded 7B04 composite sheet. Journal of Materials Engineering, 2021, 49(3): 78-86.
CHEN X M , SONG R G , LI J . Current research status and development trends of 7xxx series aluminum alloys[J]. Materials Review, 2009, 23 (2): 67- 70.
doi: 10.3321/j.issn:1005-023X.2009.02.021
SONG Y B , LI L , LÜ J M , et al. Research status and perspective of 7xxx series aluminum alloys welding[J]. Transactions of Nonferrous Metals Society of China, 2018, 28 (3): 492- 501.
ZHU L Z , LI Z H , ZHANG Z , et al. Hot deformation simulation of spray formed 7055 aluminum alloy[J]. Journal of Aeronautical Materials, 2016, 36 (1): 18- 25.
ZANG J X , ZHENG L B , ZHANG K , et al. Flow stress behavior of a new high strength Al-Zn-Mg-Cu alloy during hot compression deformation[J]. Journal of Aeronautical Materials, 2011, 31 (3): 35- 39.
doi: 10.3969/j.issn.1005-5053.2011.3.007
5
WU X D , LIAO B , YAN C J , et al. Grain refinement in an Al-Zn-Mg-Cu casting ingot[J]. Materials Science Forum, 2016, 877, 104- 108.
doi: 10.4028/www.scientific.net/MSF.877.104
YAN L M , LI Y Y , MAO B P . Influence of hot rolling process on microstructures of 7055 aluminum alloy thick plate[J]. Special Casting & Nonferrous Alloys, 2012, 32 (9): 853- 855.
HAN X L , DU Z W , FU X , et al. Microstructure of 7B04 aluminum alloy thick plates in hot-rolled and peak-aged condition[J]. Transactions of Materials and Heat Treatment, 2013, 34 (5): 87- 91.
9
LI C , WAN M , WU X D , et al. Constitutive equations in creep of 7B04 aluminum alloys[J]. Materials Science and Engineering: A, 2010, 527 (16/17): 3623- 3629.
10
WU F , ZHOU W L , ZHAO B , et al. Interface microstructure and bond strength of 1420/7B04 composite sheets prepared by diffusion bonding[J]. Rare Metals, 2018, 37 (7): 613- 620.
doi: 10.1007/s12598-018-1065-3
JING W , ZHAO D , XU G X , et al. Optimum annealing process scheme in aluminum alloy 7B04 sheet formation[J]. Journal of Shenyang Ligong University, 2012, 31 (2): 91- 94.
WANG J , YANG W J , LI Z L , et al. Superplastic behavior and deformation mechanism of 7B04 Al-alloy[J]. Chinese Journal of Materials Research, 2018, 32 (9): 675- 684.
13
LIAO B , WU X D , YAN C J , et al. Microstructure characterization of Al-cladded Al-Zn-Mg-Cu sheet in different hot deformation conditions[J]. Transactions of Nonferrous Metals Society of China, 2017, 27 (8): 1689- 1697.
doi: 10.1016/S1003-6326(17)60191-2
14
RAJ R . Development of a processing map for use in warm-forming and hot-forming processes[J]. Metallurgical and Materials Transactions A, 1981, 12 (6): 1087- 1097.
15
PRASAD Y V R K , GEGEL H L , DORAIVELU S M , et al. Modeling of dynamic material behavior in hot deformation: forging of Ti-6242[J]. Metallurgical Transactions A, 1984, 15 (10): 1883- 1892.
16
PRASAD Y V R K , SESHACHARYULU T . Modelling of hot deformation for microstructural control[J]. International Materials Reviews, 2013, 43 (6): 243- 258.
17
张敬奇. 加工图理论研究与加工图技术的实现[D]. 沈阳: 东北大学, 2010.
17
ZHANG J Q. Analysis of processing map theory and the implementation of processing map technology[D]. Shenyang: Northeastern University, 2010.
18
TAN Y B , MA Y H , ZHAO F . Hot deformation behavior and constitutive modeling of fine grained Inconel 718 superalloy[J]. Journal of Alloys and Compounds, 2018, 741, 85- 96.
19
YIN X Q , PARK C H , LI Y F , et al. Mechanism of continuous dynamic recrystallization in a 50Ti-47Ni-3Fe shape memory alloy during hot compressive deformation[J]. Journal of Alloys and Compounds, 2017, 693, 426- 431.
LIANG X , CHEN K H , CHEN X H , et al. Effect of isothermal forging rate on microstructure and properties of 7085 aluminum alloy[J]. Materials Science and Engineering of Powder Metallurgy, 2011, 16 (2): 290- 295.
21
REN B , MORRIS J G . Microstructure and texture evolution of Al during hot and cold rolling[J]. Metallurgical and Materials Transactions A, 1995, 26, 31- 40.
doi: 10.1007/BF02669792
22
WU X , LI L , LIU W , et al. Development of adiabatic shearing bands in 7003-T4 aluminum alloy under high strain rate impacting[J]. Materials Science and Engineering: A, 2018, 732, 91- 98.
23
LIU S , PAN Q , LI M , et al. Microstructure evolution and physical-based diffusion constitutive analysis of Al-Mg-Si alloy during hot deformation[J]. Materials & Design, 2019, 184, 1- 15.
ZHAO Y Q , LI Y , LU F X , et al. Flow stress behaviour and microstructure of 7150 aluminum alloy during hot deformation[J]. Journal of Aeronautical Materials, 2015, 35 (3): 18- 23.
25
LIAO B , WU X D , CAO L F , et al. The microstructural evolution of aluminum alloy 7055 manufactured by hot thermo-mechanical process[J]. Journal of Alloys and Compounds, 2019, 796, 103- 110.
26
SHIMIZU I . Theories and applicability of grain size piezometers: the role of dynamic recrystallization mechanisms[J]. Journal of Structural Geology, 2008, 30 (7): 899- 917.
27
LIN Y C , WU X Y , CHEN X M , et al. EBSD study of a hot deformed nickel-based superalloy[J]. Journal of Alloys and Compounds, 2015, 640, 101- 113.
28
MEHTONEN S V , KARJALAINEN L P , PORTER D A . Hot deformation behavior and microstructure evolution of a stabilized high-Cr ferritic stainless steel[J]. Materials Science and Engineering: A, 2013, 571, 1- 12.
29
MANDAL S , BHADURI A K , SUBRAMANYA S V . A study on microstructural evolution and dynamic recrystallization during isothermal deformation of a Ti-modified austenitic stainless steel[J]. Metallurgical and Materials Transactions A, 2010, 42 (4): 1062- 1072.
doi: 10.1007/s11661-010-0517-7
30
JIA D , SUN W , XU D , et al. Dynamic recrystallization behavior of GH4169G alloy during hot compressive deformation[J]. Journal of Materials Science & Technology, 2019, 35 (9): 1851- 1859.
31
HUMPHREYS F J , HATHERLY M . Recrystallization and related annealing phenomena[M]. Oxford: Elsevier, 2004: 437- 441.