Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (3): 78-86    DOI: 10.11868/j.issn.1001-4381.2020.000491
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
7B04包铝复合板热变形行为及其对组织演变的影响
杨璐1, 曹敏2(), 曹玲飞3, 廖斌3, 王正安1
1 西南铝业(集团)有限责任公司, 重庆 401326
2 装备发展部某中心, 北京 100000
3 重庆大学材料科学与工程学院, 重庆 400044
Hot deformation behavior and its effect on microstructure evolution of aluminum cladded 7B04 composite sheet
Lu YANG1, Min CAO2(), Ling-fei CAO3, Bin LIAO3, Zheng-an WANG1
1 Southwest Aluminum(Group) Co., Ltd., Chongqing 401326, China
2 Equipment Research and Development Center, Beijing 100000, China
3 College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
全文: PDF(18904 KB)   HTML ( 0 )  
输出: BibTeX | EndNote (RIS)      
摘要 

利用热模拟实验研究7B04包铝复合板在变形温度为380~450℃和应变速率为0.1~30 s-1的热压缩性能,结果表明:随着真应变的增加,热加工图失稳区逐渐向高应变速率区域扩展。最适宜的热加工区域为:温度380~410℃,应变速率5~30 s-1。采用EBSD技术对变形后的组织进行表征,结果表明:随着温度的增加和应变速率的降低,再结晶晶粒趋向于晶界平直化及晶界取向差逐渐增加的方向演变。包铝层在变形过程中主要发生连续动态再结晶,而7B04基体中同时存在不连续动态再结晶、连续动态再结晶(含几何动态再结晶)。材料最佳的热变形温度为410℃和应变速率10 s-1,此时7B04基体和包铝层的晶粒尺寸均保持在较小的范围内。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨璐
曹敏
曹玲飞
廖斌
王正安
关键词 7B04复合板热加工图微观组织再结晶机制晶粒尺寸    
Abstract

Hot compression properties of aluminium cladded 7B04 composite sheets were investigated by thermal simulation testing at the deformation temperatures of 380-450 ℃ and strain rates of 0.1-30 s-1. The results show that the instability zone of hot processing map gradually expands to the region of high strain rates with the increase of true strains. The most suitable hot working zone is at the temperature range of 380-410 ℃ and strain rate of 5-30 s-1. Electron backscattered diffraction (EBSD) technique was employed to study the deformed microstructure. The results show that the recrystallized grains tend to have flat boundaries and the orientation difference between grain boundaries increases gradually with the increase of temperature and the decrease of strain rate. During deformation, the Al-clad layer shows mainly continuous dynamic recrystallization, while discontinuous dynamic recrystallization and continuous dynamic recrystallization (including geometric dynamic recrystallization) co-exist in the 7B04 matrix. The optimal hot deformation temperature of materials are 410 ℃ at the strain rate of 10 s-1, at this moment, the grain size of both 7B04 matrix and Al cladding is close and small.

Key words7B04 composite plate    hot processing map    microstructure    recrystallization mechanism    grain size
收稿日期: 2020-06-01      出版日期: 2021-03-20
中图分类号:  TG146.2  
基金资助:国家重点研发计划(2016YFB0300901);重庆市留创计划创新类项目(cx2018002);中央高校基本科研业务费(2020CDJDPT001)
作者简介: 曹玲飞(1977-), 女, 研究员, 博士, 主要研究铝合金组织结构及性能的关系, 联系地址: 重庆市沙坪坝区沙正街174号重庆大学材料科学与工程学院(400044), E-mail: caolingfei@cqu.edu.cn
引用本文:   
杨璐, 曹敏, 曹玲飞, 廖斌, 王正安. 7B04包铝复合板热变形行为及其对组织演变的影响[J]. 材料工程, 2021, 49(3): 78-86.
Lu YANG, Min CAO, Ling-fei CAO, Bin LIAO, Zheng-an WANG. Hot deformation behavior and its effect on microstructure evolution of aluminum cladded 7B04 composite sheet. Journal of Materials Engineering, 2021, 49(3): 78-86.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.000491      或      http://jme.biam.ac.cn/CN/Y2021/V49/I3/78
Alloy Si Fe Cu Mn Mg Zn Cr Ni Ti Al
7B04 0.051 0.17 1.5 0.24 2.09 5.66 0.15 0.003 0.007 Bal
7A01 0.06 0.18 0.008 0.92 Bal
Table 1  实验用铝合金化学成分(质量分数/%)
Fig.1  不同变形条件下7B04包铝复合板真应力-真应变曲线
(a) =0.1 s-1; (b)=1 s-1; (c)=10 s-1; (d)=30 s-1
Fig.2  不同应变下7B04包铝复合板的热加工图
(a)ε=0.3;(b)ε=0.6;(c)ε=0.9;(d)各应变的叠加图
Fig.3  7B04包铝复合板在450 ℃不同应变速率下的包铝层晶界图
(a)0.1 s-1; (b)1 s-1; (c)10 s-1; (d)30 s-1
Fig.4  7B04包铝复合板在450 ℃不同应变速率下的基体晶界图
(a)0.1 s-1; (b)1 s-1; (c)10 s-1; (d)30 s-1
Fig.5  应变速率0.1 s-1不同变形温度下的包铝层(1)及基体(2)晶界图
(a)380 ℃; (b)410 ℃; (c)450 ℃
Fig.6  7B04复合板在450 ℃不同应变速率下包铝层(a)及基体(b)晶界取向差角
Fig.7  不同变形条件下包铝层及基体的晶粒尺寸
1 陈小明, 宋仁国, 李杰. 7xxx系铝合金的研究现状及发展趋势[J]. 材料导报, 2009, 23 (2): 67- 70.
doi: 10.3321/j.issn:1005-023X.2009.02.021
1 CHEN X M , SONG R G , LI J . Current research status and development trends of 7xxx series aluminum alloys[J]. Materials Review, 2009, 23 (2): 67- 70.
doi: 10.3321/j.issn:1005-023X.2009.02.021
2 宋友宝, 李龙, 吕金明, 等. 7xxx系铝合金焊接研究现状与展望[J]. 中国有色金属学报, 2018, 28 (3): 492- 501.
2 SONG Y B , LI L , LÜ J M , et al. Research status and perspective of 7xxx series aluminum alloys welding[J]. Transactions of Nonferrous Metals Society of China, 2018, 28 (3): 492- 501.
3 祝令状, 李忠华, 张桢, 等. 喷射成形7055铝合金热变形行为模拟[J]. 航空材料学报, 2016, 36 (1): 18- 25.
3 ZHU L Z , LI Z H , ZHANG Z , et al. Hot deformation simulation of spray formed 7055 aluminum alloy[J]. Journal of Aeronautical Materials, 2016, 36 (1): 18- 25.
4 臧金鑫, 郑林斌, 张坤, 等. 新型超高强Al-Zn-Mg-Cu铝合金热压缩变形的流变应力行为[J]. 航空材料学报, 2011, 31 (3): 35- 39.
doi: 10.3969/j.issn.1005-5053.2011.3.007
4 ZANG J X , ZHENG L B , ZHANG K , et al. Flow stress behavior of a new high strength Al-Zn-Mg-Cu alloy during hot compression deformation[J]. Journal of Aeronautical Materials, 2011, 31 (3): 35- 39.
doi: 10.3969/j.issn.1005-5053.2011.3.007
5 WU X D , LIAO B , YAN C J , et al. Grain refinement in an Al-Zn-Mg-Cu casting ingot[J]. Materials Science Forum, 2016, 877, 104- 108.
doi: 10.4028/www.scientific.net/MSF.877.104
6 闫亮明, 李园园, 毛柏平. 热轧工艺对7055铝合金厚板组织的影响[J]. 特种铸造及有色合金, 2012, 32 (9): 853- 855.
6 YAN L M , LI Y Y , MAO B P . Influence of hot rolling process on microstructures of 7055 aluminum alloy thick plate[J]. Special Casting & Nonferrous Alloys, 2012, 32 (9): 853- 855.
7 龚文源, 郑小平, 田亚强, 等. 7075铝合金热轧工艺研究[J]. 热加工工艺, 2017, 46 (7): 1- 4.
7 GONG W Y , ZHENG X P , TIAN Y Q , et al. Research on hot rolling process of 7075 aluminum alloy[J]. Hot Working Technology, 2017, 46 (7): 1- 4.
8 韩小磊, 杜志伟, 付新, 等. 7B04铝合金厚板热轧态和单级峰时效态组织分析[J]. 材料热处理学报, 2013, 34 (5): 87- 91.
8 HAN X L , DU Z W , FU X , et al. Microstructure of 7B04 aluminum alloy thick plates in hot-rolled and peak-aged condition[J]. Transactions of Materials and Heat Treatment, 2013, 34 (5): 87- 91.
9 LI C , WAN M , WU X D , et al. Constitutive equations in creep of 7B04 aluminum alloys[J]. Materials Science and Engineering: A, 2010, 527 (16/17): 3623- 3629.
10 WU F , ZHOU W L , ZHAO B , et al. Interface microstructure and bond strength of 1420/7B04 composite sheets prepared by diffusion bonding[J]. Rare Metals, 2018, 37 (7): 613- 620.
doi: 10.1007/s12598-018-1065-3
11 景武, 赵怿, 许广兴, 等. 7B04铝合金薄板成形过程中的退火工艺优化[J]. 沈阳理工大学学报, 2012, 31 (2): 91- 94.
11 JING W , ZHAO D , XU G X , et al. Optimum annealing process scheme in aluminum alloy 7B04 sheet formation[J]. Journal of Shenyang Ligong University, 2012, 31 (2): 91- 94.
12 王建, 杨文静, 李卓梁, 等. 7B04铝合金的超塑变形行为及其机理[J]. 材料研究学报, 2018, 32 (9): 675- 684.
12 WANG J , YANG W J , LI Z L , et al. Superplastic behavior and deformation mechanism of 7B04 Al-alloy[J]. Chinese Journal of Materials Research, 2018, 32 (9): 675- 684.
13 LIAO B , WU X D , YAN C J , et al. Microstructure characterization of Al-cladded Al-Zn-Mg-Cu sheet in different hot deformation conditions[J]. Transactions of Nonferrous Metals Society of China, 2017, 27 (8): 1689- 1697.
doi: 10.1016/S1003-6326(17)60191-2
14 RAJ R . Development of a processing map for use in warm-forming and hot-forming processes[J]. Metallurgical and Materials Transactions A, 1981, 12 (6): 1087- 1097.
15 PRASAD Y V R K , GEGEL H L , DORAIVELU S M , et al. Modeling of dynamic material behavior in hot deformation: forging of Ti-6242[J]. Metallurgical Transactions A, 1984, 15 (10): 1883- 1892.
16 PRASAD Y V R K , SESHACHARYULU T . Modelling of hot deformation for microstructural control[J]. International Materials Reviews, 2013, 43 (6): 243- 258.
17 张敬奇. 加工图理论研究与加工图技术的实现[D]. 沈阳: 东北大学, 2010.
17 ZHANG J Q. Analysis of processing map theory and the implementation of processing map technology[D]. Shenyang: Northeastern University, 2010.
18 TAN Y B , MA Y H , ZHAO F . Hot deformation behavior and constitutive modeling of fine grained Inconel 718 superalloy[J]. Journal of Alloys and Compounds, 2018, 741, 85- 96.
19 YIN X Q , PARK C H , LI Y F , et al. Mechanism of continuous dynamic recrystallization in a 50Ti-47Ni-3Fe shape memory alloy during hot compressive deformation[J]. Journal of Alloys and Compounds, 2017, 693, 426- 431.
20 梁信, 陈康华, 陈学海, 等. 等温锻造速率对7085铝合金组织与性能的影响[J]. 粉末冶金材料科学与工程, 2011, 16 (2): 290- 295.
20 LIANG X , CHEN K H , CHEN X H , et al. Effect of isothermal forging rate on microstructure and properties of 7085 aluminum alloy[J]. Materials Science and Engineering of Powder Metallurgy, 2011, 16 (2): 290- 295.
21 REN B , MORRIS J G . Microstructure and texture evolution of Al during hot and cold rolling[J]. Metallurgical and Materials Transactions A, 1995, 26, 31- 40.
doi: 10.1007/BF02669792
22 WU X , LI L , LIU W , et al. Development of adiabatic shearing bands in 7003-T4 aluminum alloy under high strain rate impacting[J]. Materials Science and Engineering: A, 2018, 732, 91- 98.
23 LIU S , PAN Q , LI M , et al. Microstructure evolution and physical-based diffusion constitutive analysis of Al-Mg-Si alloy during hot deformation[J]. Materials & Design, 2019, 184, 1- 15.
24 赵业青, 李岩, 鲁法云, 等. 7150铝合金热变形行为及微观组织[J]. 航空材料学报, 2015, 35 (3): 18- 23.
24 ZHAO Y Q , LI Y , LU F X , et al. Flow stress behaviour and microstructure of 7150 aluminum alloy during hot deformation[J]. Journal of Aeronautical Materials, 2015, 35 (3): 18- 23.
25 LIAO B , WU X D , CAO L F , et al. The microstructural evolution of aluminum alloy 7055 manufactured by hot thermo-mechanical process[J]. Journal of Alloys and Compounds, 2019, 796, 103- 110.
26 SHIMIZU I . Theories and applicability of grain size piezometers: the role of dynamic recrystallization mechanisms[J]. Journal of Structural Geology, 2008, 30 (7): 899- 917.
27 LIN Y C , WU X Y , CHEN X M , et al. EBSD study of a hot deformed nickel-based superalloy[J]. Journal of Alloys and Compounds, 2015, 640, 101- 113.
28 MEHTONEN S V , KARJALAINEN L P , PORTER D A . Hot deformation behavior and microstructure evolution of a stabilized high-Cr ferritic stainless steel[J]. Materials Science and Engineering: A, 2013, 571, 1- 12.
29 MANDAL S , BHADURI A K , SUBRAMANYA S V . A study on microstructural evolution and dynamic recrystallization during isothermal deformation of a Ti-modified austenitic stainless steel[J]. Metallurgical and Materials Transactions A, 2010, 42 (4): 1062- 1072.
doi: 10.1007/s11661-010-0517-7
30 JIA D , SUN W , XU D , et al. Dynamic recrystallization behavior of GH4169G alloy during hot compressive deformation[J]. Journal of Materials Science & Technology, 2019, 35 (9): 1851- 1859.
31 HUMPHREYS F J , HATHERLY M . Recrystallization and related annealing phenomena[M]. Oxford: Elsevier, 2004: 437- 441.
[1] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[2] 朱阳阳, 李晓延, 张伟栋, 张虎, 何溪. 全Cu3Sn焊点在高温时效下的组织及力学性能[J]. 材料工程, 2022, 50(9): 169-176.
[3] 张昌青, 王树文, 罗德春, 师文辰, 刘晓, 崔国胜, 陈波阳, 辛舟, 芮执元. 热电耦合对铝/钢连续驱动摩擦焊接头组织的影响机理[J]. 材料工程, 2022, 50(5): 35-42.
[4] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[5] 安强, 祁文军, 左小刚. TA15钛合金表面原位合成TiC增强钛基激光熔覆层的组织与耐磨性[J]. 材料工程, 2022, 50(4): 139-146.
[6] 孙琦迪, 杨蔚涛, 郝庆国, 关肖虎, 章斌, 杨旗. 低周疲劳变形过程中Fe-33Mn-4Si合金钢的微观组织演变[J]. 材料工程, 2022, 50(4): 162-171.
[7] 计植耀, 马跃, 王清, 董闯. 高性能软磁合金的研究进展[J]. 材料工程, 2022, 50(3): 69-80.
[8] 汤中英, 邢清源, 杨守杰, 丁宁. 新型Al-Zn-Mg-Sc-Er-Zr合金的热变形行为[J]. 材料工程, 2022, 50(3): 131-137.
[9] 余晖, 任军超, 杨鑫, 郭舒龙, 余炜, 冯建航, 殷福星, 辛光善. Zn层添加AZ31/7075合金复合成形工艺及组织与性能研究[J]. 材料工程, 2022, 50(3): 157-165.
[10] 陈维平, 陈焕达, 褚晨亮, 付志强. 粉末冶金(FeNiMnAlx)50Cu50中熵合金的微观组织与力学性能[J]. 材料工程, 2022, 50(10): 55-62.
[11] 邵震, 崔雷, 王东坡, 陈永亮, 胡正根, 王非凡. 几何参数对2219铝合金拉拔式摩擦塞补焊接头微观组织及力学性能的影响[J]. 材料工程, 2022, 50(1): 25-32.
[12] 李安庆, 张立华, 蒋日鹏, 李晓谦, 张昀. 冷却速度及超声振动协同作用对7085铝合金凝固组织及力学性能的影响[J]. 材料工程, 2021, 49(8): 63-71.
[13] 谷籽旺, 郭文敏, 张弘鳞, 李文娟. 基于核壳结构粉体设计的CoNiCrAlY-Al2O3复合涂层组织结构及其抗氧化性能[J]. 材料工程, 2021, 49(7): 112-123.
[14] 于娟, 陆政, 鲁原, 熊艳才, 李国爱, 冯朝辉, 郝时嘉. 中间形变热处理对2A97铝锂合金组织和性能的影响[J]. 材料工程, 2021, 49(5): 130-136.
[15] 武永丽, 熊毅, 陈正阁, 查小琴, 岳赟, 刘玉亮, 张金民, 任凤章. 超音速微粒轰击对TC11钛合金组织和疲劳性能的影响[J]. 材料工程, 2021, 49(5): 137-143.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn