Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (2): 62-72    DOI: 10.11868/j.issn.1001-4381.2021.000073
  综述 本期目录 | 过刊浏览 | 高级检索 |
纳米材料模拟酶应用进展
吴鹏1, 陈诚1,2,*(), 赵雪伶1,2,*(), 林东海1,2
1 上海第二工业大学 能源与材料学院, 上海 201209
2 上海先进热功能材料工程技术研究中心, 上海 201209
Progress in application of nanomaterials mimic enzymes
Peng WU1, Cheng CHEN1,2,*(), Xueling ZHAO1,2,*(), Donghai LIN1,2
1 School of Energy and Materials, Shanghai Polytechnic University, Shanghai 201209, China
2 Shanghai Engineering Research Center of Advanced Thermal Functional Materials, Shanghai 201209, China
全文: PDF(5203 KB)   HTML ( 3 )  
输出: BibTeX | EndNote (RIS)      
摘要 

天然酶是人体活细胞产生的微量蛋白质,正是由于酶的存在,生物体的日常运行才能有序进行。目前,酶在生物医药、催化和检测等领域有着广泛的应用。然而天然酶存在易失活、稳定性差、合成困难、纯化复杂、价格昂贵等缺点,阻碍了其大规模应用。近几十年来,纳米材料模拟酶作为新一代人工酶,由于其稳定性高和重复性好等优点,逐渐成为天然酶的替代品。纳米材料模拟酶在许多领域发挥着重要作用,本文重点介绍了纳米材料模拟酶在电化学传感领域检测O2·-和丹参酸,还可以检测谷胱甘肽、葡萄糖、胆固醇以及H2O2等生物小分子,在环境污染防治领域中能够有效检测重金属盐类和农药的含量,纳米模拟酶还能够通过检测特定序列的DNA对癌症、病毒感染等疾病做出提前预防。今后的重点研究方向将聚焦在纳米模拟酶之间的偶联、反应机理研究、优化酶反应环境和解决底物选择性等方面。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴鹏
陈诚
赵雪伶
林东海
关键词 纳米材料模拟酶电化学传感器谷胱甘肽葡萄糖农药重金属    
Abstract

Natural enzymes are trace proteins produced by living cells in human body. It is precisely because of the existence of enzyme that the daily operation of organisms can be carried out orderly. At present, enzymes are used in many fields such as biomedicine, catalysis and detection. However, natural enzymes have many disadvantages, such as easy inactivation, poor stability, difficult synthesis, complex purification and high price, which hinder the large-scale application. In the past decades, as a new generation of artificial enzymes, nanomaterials mimic enzymes has gradually become a substitute for natural enzyme due to their high stability and good repeatability. Nanomaterial mimetic enzymes play an important role in many fields. The application of nanomaterial mimetic enzymes in the detection of O2·- and salvianolic acid in the field of electrochemical sensing was focused on in this paper, as well as in the detection of small biological molecules such as glutathione, glucose, cholesterol and H2O2, which can effectively detect the content of heavy metal salts and pesticides in the field of environmental pollution prevention and control, nanomaterials mimic enzymes can also prevent cancer, virus infection and other diseases by detecting specific sequences of DNA. Finally, it was expected that the future research of nanomaterials mimic enzymes will focus on the coupling between nanomaterials mimic enzymes, reaction mechanism, optimization of enzyme reaction environment and substrate selectivity, which will be the key research direction in the future.

Key wordsnanomaterials    mimic enzyme    electrochemical sensor    glutathione    glucose    pesticide    heavy metal
收稿日期: 2021-01-27      出版日期: 2022-02-23
中图分类号:  TB383  
基金资助:国家自然科学基金资助项目(21504051);上海高校特聘教授(东方学者)计划;上海市科委扬帆计划(17YF1406600);上海市教委晨光计划(18CG68);上海第二工业大学重点学科(材料科学与工程)资助(XXKZD1601)
通讯作者: 陈诚,赵雪伶     E-mail: chencheng@sspu.edu.cn;xlzhao@sspu.edu.cn
作者简介: 赵雪伶(1988-), 女, 副教授, 博士, 研究方向为模拟酶、智能传感材料及器件, 联系地址: 上海市浦东新区金海路2360号上海第二工业大学工学部环境与材料工程学院(201209), E-mail: xlzhao@sspu.edu.cn
陈诚(1983-), 男, 副教授, 博士, 研究方向为功能化光子晶体材料, 联系地址: 上海市浦东新区金海路2360号上海第二工业大学工学部环境与材料工程学院(201209), E-mail: chencheng@sspu.edu.cn
引用本文:   
吴鹏, 陈诚, 赵雪伶, 林东海. 纳米材料模拟酶应用进展[J]. 材料工程, 2022, 50(2): 62-72.
Peng WU, Cheng CHEN, Xueling ZHAO, Donghai LIN. Progress in application of nanomaterials mimic enzymes. Journal of Materials Engineering, 2022, 50(2): 62-72.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000073      或      http://jme.biam.ac.cn/CN/Y2022/V50/I2/62
Fig.1  荧光法测定葡萄糖示意图[34]
Fig.2  JFSNs过氧化物酶活性及葡萄糖检测示意图[55]
Fig.3  Au@Fe3O4纳米复合材料的过氧化物酶模拟活性示意图和胆固醇的比色检测[60]
Fig.4  灭线磷检测示意图[66]
Fig.5  汞离子检测示意图[73]
Fig.6  再生DNA镊子对酶级联反应的动态调控示意图[74]
1 LIM S I , YOON S , YONG H K , et al. Site-specific bioconjugation of an organometallic electron mediator to an enzyme with retained photocatalytic cofactor regenerating capacity and enzymatic activity[J]. Molecules, 2015, 20, 5975- 5986.
doi: 10.3390/molecules20045975
2 OHASHI T , IIZUKA S , SHIMADA Y , et al. Oral administration of recombinant human acid α-glucosidase reduces specific antibody formation against enzyme in mouse[J]. Molecular Genetics and Metabolism, 2011, 103, 98- 100.
doi: 10.1016/j.ymgme.2011.01.009
3 DONG Z Y , ZHU J Y , LUO Q , et al. Understanding enzyme catalysis by means of supramolecular artificial enzymes[J]. Science China Chemistry, 2013, 56, 1067- 1074.
doi: 10.1007/s11426-013-4871-3
4 HE W W , WAYNE W , XIA Q S , et al. Enzyme-like activity of nanomaterials[J]. Journal of Environmental Science and Health: Part C, 2014, 32, 186- 211.
doi: 10.1080/10590501.2014.907462
5 ABAT A , BRENNA E , FRONZA G , et al. Enzyme-mediated preparation of chiral 1, 3-dioxane odorants[J]. Helvetica Chimica Acta, 2003, 86, 592- 606.
doi: 10.1002/hlca.200390059
6 KARTON L N , VOGEL U , SELLA E , et al. Enzyme-mediated nutrient release: glucose-precursor activation by beta-galactosidase to induce bacterial growth[J]. Organic & Biomolecular Chemistry, 2013, 11, 2903- 2910.
7 SANCHEZ S R , ROMERO M A , MONTIEL C , et al. Cytoprotective effect of the enzyme-mediated polygallic acid on fibroblast cells under exposure of UV-irradiation[J]. Materials Science and Engineering C, 2017, 76, 417- 424.
doi: 10.1016/j.msec.2017.03.068
8 TIMO V D Z , HU J G , JACK N S . Mechanistic insights into the liquefaction stage of enzyme-mediated biomass deconstruction[J]. Biotechnology & Bioengineering, 2017, 114, 2489- 2496.
9 DONG J L , SONG L N , YIN J J , et al. Co3O4 Nanoparticles with multi-enzyme activities and their application in immunohistochemical assay[J]. ACS Applied Materials & Interfaces, 2014, 6 (3): 1959- 1962.
10 WEI H , WANG E K . Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes[J]. Chemical Society Reviews, 2013, 42, 6060- 6093.
doi: 10.1039/c3cs35486e
11 CRAM D J . The design of molecular hosts, guests, and their complexes[J]. Science, 1988, 240, 760- 767.
doi: 10.1126/science.3283937
12 LEHN J M . Supramolecular chemistry-scope and perspectives molecules, supermolecules, and molecular devices (Nobel Lecture)[J]. Angewandte Chemie International Edition in English, 1988, 27 (1): 89- 112.
doi: 10.1002/anie.198800891
13 王夔. 生物无机化学研究的动向和趋势[J]. 化学通报, 1985, 7, 11.
13 WANG K . The trend and trend of bioinorganic chemistry research[J]. Chemical Bulletin, 1985, 7, 11.
14 LIN Y H , REN J S , QU X G . Catalytically active nanomaterials: a promising candidate for artificial enzymes[J]. Accounts of Chemical Research, 2014, 47 (4): 1097- 1105.
doi: 10.1021/ar400250z
15 WANG T , FU Y C , CHAI L Y , et al. Filling carbon nanotubes with prussian blue nanoparticles of high peroxidase-like catalytic activity for colorimetric chemo-and biosensing[J]. Chemistry-A European Journal, 2014, 20 (9): 2623- 2630.
doi: 10.1002/chem.201304035
16 HE W W , JIA H M , LI X X , et al. Understanding the formation of CuS concave superstructures with peroxidase-like activity[J]. Nanoscale, 2012, 4 (11): 3501- 3506.
doi: 10.1039/c2nr30310h
17 AMIT K D , SWARUP K M , DIVESH N S , et al. Synthesis of FeS and FeSe nanoparticles from a single source precursor: a study of their photocatalytic activity, peroxidase-like behavior, and electrochemical sensing of H2O2[J]. ACS Applied Materials & Interfaces, 2012, 4 (4): 1919- 1927.
18 JV Y , LI B X , CAO R . Positively-charged gold nanoparticles as peroxidase mimic and their application in hydrogen peroxide and glucose detection[J]. Chemical Communications, 2010, 46 (42): 8017- 8019.
doi: 10.1039/c0cc02698k
19 GOESMANN H , FELDMANN C . Nanoparticulate functional materials[J]. Angewandte Chemie International Edition, 2010, 49 (8): 1362- 1395.
doi: 10.1002/anie.200903053
20 RAN F P , ZOU Y L , XU Y X , et al. Fe3O4@MoS2@PEI-facilitated enzyme tethering for efficient removal of persistent organic pollutants in water[J]. Chemical Engineering Journal, 2019, 375, 121947.
doi: 10.1016/j.cej.2019.121947
21 MENG F W , MA X Y , DUAN N , et al. Ultrasensitive SERS aptasensor for the detection of oxytetracycline based on a gold-enhanced nano-assembly[J]. Talanta, 2017, 165, 412- 418.
doi: 10.1016/j.talanta.2016.12.088
22 路丽霞, 王洋, 蔺晓晓, 等. 基于对铂纳米粒子过氧化物模拟酶活性的抑制检测碘离子[J]. 分析化学研究报告, 2018, 46, 94- 99.
22 LU L X , WANG Y , LIN X X , et al. Detection of iodine ion based on inhibition of platinum nanoparticles peroxidase mimic activity[J]. Analytical Chemistry Research Report, 2018, 46, 94- 99.
23 张飒, 王建江, 赵芳, 等. 电纺Co掺杂碳纳米纤维的制备及其吸波性能[J]. 材料工程, 2019, 47 (12): 118- 123.
doi: 10.11868/j.issn.1001-4381.2018.000101
23 ZHANG S , WANG J J , ZHAO F , et al. Preparation of Co-doped carbon nanofibers composites synthesized by electrospinning and its microwave absorption properties[J]. Journal of Materials Engineering, 2019, 47 (12): 118- 123.
doi: 10.11868/j.issn.1001-4381.2018.000101
24 蔡满园, 孙晓刚, 陈玮, 等. 以预锂化多壁碳纳米管为负极的锂离子电容器性能[J]. 材料工程, 2019, 47 (5): 145- 152.
24 CAI M Y , SUN X G , CHEN W , et al. Performance of lithium-ion capacitors using pre-lithiated multiwalled carbon nanotubes as negative electrode[J]. Journal of Materials Engineering, 2019, 47 (5): 145- 152.
25 王剑桥, 雷卫宁, 薛子明, 等. 石墨烯增强金属基复合材料的制备及应用研究进展[J]. 材料工程, 2018, 46 (12): 18- 27.
doi: 10.11868/j.issn.1001-4381.2017.001534
25 WANG J Q , LEI W N , XUE Z M , et al. Research progress on synthesis and application of graphene reinforced metal matrix composites[J]. Journal of Materials Engineering, 2018, 46 (12): 18- 27.
doi: 10.11868/j.issn.1001-4381.2017.001534
26 WU K Y , FENG Y , LI Y S , et al. S-doped reduced graphene oxide: a novel peroxidase mimetic and its application in sensitive detection of hydrogen peroxide and glucose[J]. Analytical and Bioanalytical Chemistry, 2020, 412, 5477- 5487.
doi: 10.1007/s00216-020-02767-6
27 LIEN C W , HUANG C C , CHANG H T . Peroxidase-mimic bismuth-gold nanoparticles for determining the activity of thrombin and drug screening[J]. Chemical Communications, 2012, 48 (64): 7952- 7959.
doi: 10.1039/c2cc32833j
28 MOHAMED E , KIM J , ROSE N , et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage[J]. Science, 2002, 295, 469- 472.
doi: 10.1126/science.1067208
29 SUSUMU K , RYO K , SHIN-ICHIRO N . Functional porous coordination polymers[J]. Angewandte Chemie International Edition, 2004, 43 (18): 2334- 2375.
doi: 10.1002/anie.200300610
30 ZHAO Z H , HUANG Y J , LIU W R , et al. Immobilized glucose oxidase on boronic acid-functionalized hierarchically porous mof as an integrated nanozyme for one-step glucose detection[J]. ACS Sustainable Chemistry & Engineering, 2020, 8, 4481- 4488.
31 GLASS R S, PERONE S P, CIARLO D R, et al. Electrochemical sensor/detector system and method[P]. US5296125 A, 1992.
32 LIU T T , NIU X G , SHI L B , et al. Electrocatalytic analysis of superoxide anion radical using nitrogen-doped graphene supported Prussian Blue as a biomimetic superoxide dismutase[J]. Electrochimica Acta, 2015, 176, 1280- 1287.
doi: 10.1016/j.electacta.2015.07.155
33 WANG M Q , CUI Y , BAO S J , et al. Nanostructured cobalt phosphates as excellent biomimetic enzymes to sensitively detect superoxide anions released from living cells[J]. Biosensors & Bioelectronics, 2017, 87, 998- 1004.
34 ALIREZA K , MAHSA H I , JAVAD H , et al. Superior peroxidase mimetic activity of WS2 nanosheets/silver nanoclusters composite: colorimetric, fluorometric and electrochemical studies[J]. Journal of Colloid and Interface Science, 2018, 515, 39- 49.
doi: 10.1016/j.jcis.2018.01.013
35 WANG Z , CHENA Y , DONG W , et al. Copper (Ⅱ)-ploy-L-histidine functionalized multi walled carbon nanotubes as efficient mimetic enzyme for sensitive electrochemical detection of salvianic acid A[J]. Biosensors and Bioelectronic, 2018, 121, 257- 264.
doi: 10.1016/j.bios.2018.09.007
36 JUNG H S , CHEN X Q , KIM J S , et al. Recent progress in luminescent and colorimetric chemosensors for detection of thiols[J]. Chemical Society Reviews, 2013, 42 (14): 6019- 6031.
doi: 10.1039/c3cs60024f
37 PANDEY P C , PANDEY A K . Tetrahydrofuran hydroperoxide mediated synthesis of Prussian blue nanoparticles: a study of their electrocatalytic activity and intrinsic peroxidase-like behavior[J]. Electrochimica Acta, 2014, 125, 465- 472.
doi: 10.1016/j.electacta.2014.01.126
38 ZHENG A X , CONG Z X , WANG J R , et al. Highly-efficient peroxidase-like catalytic activity of graphene dots for biosensing[J]. Biosensors and Bioelectronics, 2013, 49, 519- 524.
doi: 10.1016/j.bios.2013.05.038
39 CHILDS S , HAROUNE N , WILLIAMS L , et al. Determination of cellular glutathione: glutathione disulfide ratio in prostate cancer cells by high performance liquid chromatography with electrochemical detection[J]. Journal of Chromatography A, 2016, 1437, 67- 73.
doi: 10.1016/j.chroma.2016.01.050
40 WANG H , LIANG S C , ZHANG Z M , et al. 3-iodoacetylaminobenzanthrone as a fluorescent derivatizing reagent for thiols in high-performance liquid chromatography[J]. Analytica Chimica Acta, 2004, 512 (2): 281- 286.
doi: 10.1016/j.aca.2004.03.002
41 KATRUSIAK A E , PATERSON P G , KAMENCIC H , et al. Pre-column derivatization high-performance liquid chromatographic method for determination of cysteine, cysteinyl-glycine, homocysteine and glutathione in plasma and cell extracts[J]. Journal of Chromatography B, 2001, 758 (2): 207- 212.
doi: 10.1016/S0378-4347(01)00182-7
42 TSIKAS D , RAIDA M , SANDMANN J , et al. Electrospray ionization mass spectrometry of low-molecular-mass S-nitroso compounds and their thiols[J]. Journal of Chromatography B, 2000, 742 (1): 99- 108.
doi: 10.1016/S0378-4347(00)00141-9
43 NIU L Y , GUAN Y S , CHEN Y Z , et al. BODIPY-based ratiometric fluorescent sensor for highly selective detection of glutathione over cysteine and homocysteine[J]. Journal of the American Chemical Society, 2012, 134 (46): 18928- 18931.
doi: 10.1021/ja309079f
44 CHEN X , KO S K , KIM M J , et al. A thiol-specific fluorescent probe and its application for bioimaging[J]. Chemical Communications, 2010, 46 (16): 2751- 2753.
doi: 10.1039/b925453f
45 LEE P T , GONCALVES L M , COMPTON R G . Electrochemical determination of free and total glutathione in human saliva samples[J]. Sensors and Actuators B, 2015, 221, 962- 968.
doi: 10.1016/j.snb.2015.07.050
46 XIANYU Y L , XIE Y Z Y , WANG N X , et al. A dispersion-dominated chromogenic strategy for colorimetric sensing of glutathione at the nanomolar level using gold nanoparticles[J]. Small, 2015, 11 (41): 5510- 5514.
doi: 10.1002/smll.201500903
47 MA Y H , ZHANG Z Y , REN C L , et al. A novel colorimetric determination of reduced glutathione in A549 cells based on Fe3O4 magnetic nanoparticles as peroxidase mimetics[J]. Analyst, 2012, 137, 485- 489.
doi: 10.1039/C1AN15718C
48 XIA F , SHI Q F , NAN Z D . Facile synthesis of Cu-CuFe2O4 nanozymes for sensitive assay of H2O2 and GSH[J]. Dalton Trans, 2020, 49, 12780- 12792.
doi: 10.1039/D0DT02395G
49 JIANG C F , ZHANG C , SONG J , et al. Cytidine-gold nanoclusters as peroxidase mimetic for colorimetric detection of glutathione (GSH), glutathione disulfide (GSSG) and glutathione reductase (GR)[J]. Spectrochimica Acta: Part A, 2020, 15, 119316.
50 JIN P , NIU X , ZHANG F , et al. Stable and reusable light-responsive reduced covalent organic framework (COF-300-AR) as a oxidase-mimicking catalyst for GSH detection in cell lysate[J]. ACS Applied Materials & Interfaces, 2020, 12, 20414- 20422.
51 GAO L Z , ZHUANG J , NIE L , et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles[J]. Nature Nanotechnology, 2007, 2, 577- 583.
doi: 10.1038/nnano.2007.260
52 CHEN W , CHEN J , LIU A L , et al. Peroxidase-like activity of cupric oxide nanoparticle[J]. ChemCatChem, 2011, 3 (7): 1151- 1154.
doi: 10.1002/cctc.201100064
53 MITRA K , GHOSH A B , SARKAR A , et al. Colorimetric estimation of human glucose level using γ-Fe2O3 nanoparticles: an easily recoverable effective mimic peroxidase[J]. Biochemical & Biophysical Research Communications, 2014, 451 (1): 30- 35.
54 CHEN W , CHEN J , FENG Y B , et al. Peroxidase-like activity of water-soluble cupric oxide nanoparticles and its analytical application for detection of hydrogen peroxide and glucose[J]. Analyst, 2012, 137, 1706- 1712.
doi: 10.1039/c2an35072f
55 LU C , LIU X J , LI Y F , et al. Multifunctional janus hematite-silica nanoparticles: Mimicking peroxidase-like activity and sensitive colorimetric detection of glucose[J]. ACS Applied Materials & Interfaces, 2015, 7 (28): 15395- 15402.
56 YUAN A , LU Y , ZHANG X , et al. Two-dimensional iron MOF nanosheet as a highly efficient nanozyme for glucose biosensing[J]. Journal of Materials Chemistry B, 2020, 8, 9295- 9303.
doi: 10.1039/D0TB01598A
57 YIN X , LIU P , XU X , et al. Breaking the pH limitation of peroxidase-like CoFe2O4 nanozyme via vitriolization for one-step glucose detection at physiological pH[J]. Sensors and Actuators B, 2021, 328, 129033.
doi: 10.1016/j.snb.2020.129033
58 ZHANG M H , YUAN R , CHAI Y Q , et al. A biosensor for cholesterol based on gold nanoparticles-catalyzed luminol electrogenerated chemiluminescence[J]. Biosensors and Bioelectronics, 2012, 32, 288- 292.
doi: 10.1016/j.bios.2011.12.008
59 LIU J B , HU X N , HOU S , et al. Au@Pt core/shell nanorods with peroxidase- and ascorbate oxidase-like activities for improved detection of glucose[J]. Sensor and Actuators B, 2012, 166/167, 708- 714.
doi: 10.1016/j.snb.2012.03.045
60 GUAN H , SONG Y , HAN B L , et al. Colorimetric detection of cholesterol based on peroxidase mimetic activity of GoldMag nanocomposites[J]. Spectrochimica Acta: Part A, 2020, 241, 118675.
doi: 10.1016/j.saa.2020.118675
61 HONG C , ZHANG X , WU C , et al. On-site colorimetric detection of cholesterol based on polypyrrole nanoparticles[J]. ACS Applied Materials & Interfaces, 2020, 12 (49): 54426- 54432.
62 王志华, 沈良. 锰过氧化氢酶及其模拟物的研究进展[J]. 杭州师范大学学报(自然科学版), 2006, 5 (6): 465- 468.
doi: 10.3969/j.issn.1674-232X.2006.06.006
62 WANG Z H , SHEN L . Research progress of manganese catalase and its mimic[J]. Journal of Hangzhou Normal University (Natural Sciences Edition), 2006, 5 (6): 465- 468.
doi: 10.3969/j.issn.1674-232X.2006.06.006
63 BAI L , JIANG W , SANG M , et al. Magnetic microspheres with polydopamine encapsulated ultra-small noble metal nanocrystals as mimetic enzymes for the colorimetric detection of H2O2 and glucose[J]. Journal of Materials Chemistry B, 2019, 7, 4568- 4580.
doi: 10.1039/C9TB00755E
64 LIU X , QIN J , ZHANG X , et al. The mechanisms of HSA@PDA/Fe nanocomposites enhanced nanozyme activity and their application for the intracellular H2O2 detection[J]. Nanoscale, 2020, 12, 24206- 24213.
doi: 10.1039/D0NR05732K
65 LIANG M M , FAN K L , PAN Y , et al. Fe3O4 magnetic nanoparticle peroxidase mimetic-based colorimetric assay for the rapid detection of organophosphorus pesticide and nerve agent[J]. Anal Chem, 2013, 85, 308- 312.
doi: 10.1021/ac302781r
66 GUAN G J , YANG L , MEI Q S , et al. Chemiluminescence switching on peroxidase-like Fe3O4 nanoparticles for selective detection and simultaneous determination of various pesticides[J]. Analytical Chemistry, 2012, 84, 9492- 9497.
doi: 10.1021/ac302341b
67 AMAR P , SAPNA B , VINITA H , et al. Nano-interface driven electrochemical sensor for pesticides detection based on the acetylcholinesterase enzyme inhibition[J]. International Journal of Biological Macromolecules, 2020, 164, 3943- 3952.
doi: 10.1016/j.ijbiomac.2020.08.215
68 LIU J W , LU Y . A colorimetric lead biosensor using DNA zyme-directed assembly of gold nanoparticles[J]. Journal of the American Chemical Society, 2003, 125, 6642- 6643.
doi: 10.1021/ja034775u
69 LIU J W , LU Y . Accelerated color change of gold nanoparticles assembled by DNAzymes for simple and fast colorimetric Pb2+ detection[J]. Journal of the American Chemical Society, 2004, 126, 12298- 12305.
doi: 10.1021/ja046628h
70 LIU J W , LU Y . Stimuli-responsive disassembly of nanoparticle aggregates for light-up colorimetric sensing[J]. Journal of the American Chemical Society, 2005, 127, 12677- 12683.
doi: 10.1021/ja053567u
71 RONALD R B . Molecular biology: making catalytic DNAs[J]. Science, 2000, 290, 2095- 2096.
doi: 10.1126/science.290.5499.2095
72 AUGUSTINE A B C , PERUMAL P . Enhanced peroxidase mimetic activity of magnetic porous carbon (MPC) utilized in colorimetric sensing of Hg(Ⅱ) ions in aqueous medium[J]. ChemistrySelect, 2020, 5, 11029- 11036.
doi: 10.1002/slct.202002743
73 YANG J Y , JIA X D , WANG X Y , et al. Mercury speciation based on mercury-stimulated peroxidase mimetic activity of gold nanoparticles[J]. Analyst, 2020, 145, 5200- 5205.
doi: 10.1039/D0AN00803F
74 KOU B B , CHAI Y Q , YUAN Y L , et al. Dynamical regulation of enzyme cascade amplification by a regenerated DNA nanotweezer for ultrasensitive electrochemical DNA detection[J]. Analytical Chemistry, 2018, 90 (18): 10701- 10706.
doi: 10.1021/acs.analchem.8b00477
75 LI A J , XIANG Y , ZHANG L , et al. Dynamic DNA self-assembly activated hemin-mimetic enzyme system for versatile fluorescent biosensing[J]. Sensors & Actuators B, 2019, 288, 757- 762.
[1] 张晟, 曾俊彦, 尚方方, 曾祥琼. 电子皮肤热点核心材料及其在生命健康领域中的应用研究进展[J]. 材料工程, 2022, 50(2): 23-37.
[2] 李华鹏, 董旭晟, 孙彬, 周国伟. TiO2/MXene纳米复合材料的可控制备及在光催化和电化学中的应用研究进展[J]. 材料工程, 2021, 49(8): 54-62.
[3] 郝冬亮, 王琪琳, 毛欣宇, 梁雅丽, 邵孝候. 壳聚糖/木质素磺酸钠吸附剂的制备及其除Pb2+和Cd2+[J]. 材料工程, 2021, 49(8): 153-161.
[4] 周璇, 郑云飞, 贾绮林, 张斐然. 新型二维层状纳米材料的抗菌研究进展[J]. 材料工程, 2021, 49(1): 55-64.
[5] 钱伟, 何大平, 李宝文. 石墨烯基电磁屏蔽材料的研究进展[J]. 材料工程, 2020, 48(7): 14-23.
[6] 张波波, 张文娟, 杜雪岩, 王有良. 铁基磁性纳米材料吸附废水中重金属离子研究进展[J]. 材料工程, 2020, 48(7): 93-102.
[7] 谢超, 邢健, 丁玉梅, 王循, 杨卫民, 李好义. 熔体微分电纺回收PP无纺布纳米纤维膜制备及吸油性能[J]. 材料工程, 2020, 48(6): 125-131.
[8] 党阿磊, 方成林, 赵曌, 赵廷凯, 李铁虎, 李昊. 新型二维纳米材料MXene的制备及在储能领域的应用进展[J]. 材料工程, 2020, 48(4): 1-14.
[9] 吴怡芳, 崇少坤, 柳永宁, 郭生武, 白利锋, 张翠萍, 李成山. 碳纳米材料构建高性能锂离子和锂硫电池研究进展[J]. 材料工程, 2020, 48(4): 25-35.
[10] 余宛键, 耿鹏, 文玫, 陈志钢. 明胶辅助共沉淀法合成硫化铜纳米材料及其光热消融癌细胞[J]. 材料工程, 2020, 48(12): 68-74.
[11] 武延泽, 王敏, 李锦丽, 赵有璟, 王怀有, 魏明. 纳米材料改善硝酸熔盐传蓄热性能的研究进展[J]. 材料工程, 2020, 48(1): 10-18.
[12] 王循, 丁玉梅, 余韶阳, 杜琳, 杨卫民, 李好义, 陈明军. 熔体微分电纺PLA/OMMT可降解纳米纤维膜制备及污染处理[J]. 材料工程, 2019, 47(7): 99-105.
[13] 朱刚兵, 张得鹏, 钱俊娟. 二硫化钼基纳米材料在电化学传感/析氢领域的研究进展[J]. 材料工程, 2019, 47(6): 20-33.
[14] 齐新, 陈翔, 彭思侃, 王继贤, 王楠, 燕绍九. MXenes二维纳米材料及其在锂离子电池中的应用研究进展[J]. 材料工程, 2019, 47(12): 10-20.
[15] 刘昊东, 朱光明, 任天宁. 功能性POSS制备的研究进展[J]. 材料工程, 2019, 47(12): 33-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn