1 School of Energy and Materials, Shanghai Polytechnic University, Shanghai 201209, China 2 Shanghai Engineering Research Center of Advanced Thermal Functional Materials, Shanghai 201209, China
Natural enzymes are trace proteins produced by living cells in human body. It is precisely because of the existence of enzyme that the daily operation of organisms can be carried out orderly. At present, enzymes are used in many fields such as biomedicine, catalysis and detection. However, natural enzymes have many disadvantages, such as easy inactivation, poor stability, difficult synthesis, complex purification and high price, which hinder the large-scale application. In the past decades, as a new generation of artificial enzymes, nanomaterials mimic enzymes has gradually become a substitute for natural enzyme due to their high stability and good repeatability. Nanomaterial mimetic enzymes play an important role in many fields. The application of nanomaterial mimetic enzymes in the detection of O2·- and salvianolic acid in the field of electrochemical sensing was focused on in this paper, as well as in the detection of small biological molecules such as glutathione, glucose, cholesterol and H2O2, which can effectively detect the content of heavy metal salts and pesticides in the field of environmental pollution prevention and control, nanomaterials mimic enzymes can also prevent cancer, virus infection and other diseases by detecting specific sequences of DNA. Finally, it was expected that the future research of nanomaterials mimic enzymes will focus on the coupling between nanomaterials mimic enzymes, reaction mechanism, optimization of enzyme reaction environment and substrate selectivity, which will be the key research direction in the future.
LIM S I , YOON S , YONG H K , et al. Site-specific bioconjugation of an organometallic electron mediator to an enzyme with retained photocatalytic cofactor regenerating capacity and enzymatic activity[J]. Molecules, 2015, 20, 5975- 5986.
doi: 10.3390/molecules20045975
2
OHASHI T , IIZUKA S , SHIMADA Y , et al. Oral administration of recombinant human acid α-glucosidase reduces specific antibody formation against enzyme in mouse[J]. Molecular Genetics and Metabolism, 2011, 103, 98- 100.
doi: 10.1016/j.ymgme.2011.01.009
3
DONG Z Y , ZHU J Y , LUO Q , et al. Understanding enzyme catalysis by means of supramolecular artificial enzymes[J]. Science China Chemistry, 2013, 56, 1067- 1074.
doi: 10.1007/s11426-013-4871-3
4
HE W W , WAYNE W , XIA Q S , et al. Enzyme-like activity of nanomaterials[J]. Journal of Environmental Science and Health: Part C, 2014, 32, 186- 211.
doi: 10.1080/10590501.2014.907462
5
ABAT A , BRENNA E , FRONZA G , et al. Enzyme-mediated preparation of chiral 1, 3-dioxane odorants[J]. Helvetica Chimica Acta, 2003, 86, 592- 606.
doi: 10.1002/hlca.200390059
6
KARTON L N , VOGEL U , SELLA E , et al. Enzyme-mediated nutrient release: glucose-precursor activation by beta-galactosidase to induce bacterial growth[J]. Organic & Biomolecular Chemistry, 2013, 11, 2903- 2910.
7
SANCHEZ S R , ROMERO M A , MONTIEL C , et al. Cytoprotective effect of the enzyme-mediated polygallic acid on fibroblast cells under exposure of UV-irradiation[J]. Materials Science and Engineering C, 2017, 76, 417- 424.
doi: 10.1016/j.msec.2017.03.068
8
TIMO V D Z , HU J G , JACK N S . Mechanistic insights into the liquefaction stage of enzyme-mediated biomass deconstruction[J]. Biotechnology & Bioengineering, 2017, 114, 2489- 2496.
9
DONG J L , SONG L N , YIN J J , et al. Co3O4 Nanoparticles with multi-enzyme activities and their application in immunohistochemical assay[J]. ACS Applied Materials & Interfaces, 2014, 6 (3): 1959- 1962.
10
WEI H , WANG E K . Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes[J]. Chemical Society Reviews, 2013, 42, 6060- 6093.
doi: 10.1039/c3cs35486e
11
CRAM D J . The design of molecular hosts, guests, and their complexes[J]. Science, 1988, 240, 760- 767.
doi: 10.1126/science.3283937
12
LEHN J M . Supramolecular chemistry-scope and perspectives molecules, supermolecules, and molecular devices (Nobel Lecture)[J]. Angewandte Chemie International Edition in English, 1988, 27 (1): 89- 112.
doi: 10.1002/anie.198800891
13
王夔. 生物无机化学研究的动向和趋势[J]. 化学通报, 1985, 7, 11.
13
WANG K . The trend and trend of bioinorganic chemistry research[J]. Chemical Bulletin, 1985, 7, 11.
14
LIN Y H , REN J S , QU X G . Catalytically active nanomaterials: a promising candidate for artificial enzymes[J]. Accounts of Chemical Research, 2014, 47 (4): 1097- 1105.
doi: 10.1021/ar400250z
15
WANG T , FU Y C , CHAI L Y , et al. Filling carbon nanotubes with prussian blue nanoparticles of high peroxidase-like catalytic activity for colorimetric chemo-and biosensing[J]. Chemistry-A European Journal, 2014, 20 (9): 2623- 2630.
doi: 10.1002/chem.201304035
16
HE W W , JIA H M , LI X X , et al. Understanding the formation of CuS concave superstructures with peroxidase-like activity[J]. Nanoscale, 2012, 4 (11): 3501- 3506.
doi: 10.1039/c2nr30310h
17
AMIT K D , SWARUP K M , DIVESH N S , et al. Synthesis of FeS and FeSe nanoparticles from a single source precursor: a study of their photocatalytic activity, peroxidase-like behavior, and electrochemical sensing of H2O2[J]. ACS Applied Materials & Interfaces, 2012, 4 (4): 1919- 1927.
18
JV Y , LI B X , CAO R . Positively-charged gold nanoparticles as peroxidase mimic and their application in hydrogen peroxide and glucose detection[J]. Chemical Communications, 2010, 46 (42): 8017- 8019.
doi: 10.1039/c0cc02698k
19
GOESMANN H , FELDMANN C . Nanoparticulate functional materials[J]. Angewandte Chemie International Edition, 2010, 49 (8): 1362- 1395.
doi: 10.1002/anie.200903053
20
RAN F P , ZOU Y L , XU Y X , et al. Fe3O4@MoS2@PEI-facilitated enzyme tethering for efficient removal of persistent organic pollutants in water[J]. Chemical Engineering Journal, 2019, 375, 121947.
doi: 10.1016/j.cej.2019.121947
21
MENG F W , MA X Y , DUAN N , et al. Ultrasensitive SERS aptasensor for the detection of oxytetracycline based on a gold-enhanced nano-assembly[J]. Talanta, 2017, 165, 412- 418.
doi: 10.1016/j.talanta.2016.12.088
LU L X , WANG Y , LIN X X , et al. Detection of iodine ion based on inhibition of platinum nanoparticles peroxidase mimic activity[J]. Analytical Chemistry Research Report, 2018, 46, 94- 99.
ZHANG S , WANG J J , ZHAO F , et al. Preparation of Co-doped carbon nanofibers composites synthesized by electrospinning and its microwave absorption properties[J]. Journal of Materials Engineering, 2019, 47 (12): 118- 123.
doi: 10.11868/j.issn.1001-4381.2018.000101
CAI M Y , SUN X G , CHEN W , et al. Performance of lithium-ion capacitors using pre-lithiated multiwalled carbon nanotubes as negative electrode[J]. Journal of Materials Engineering, 2019, 47 (5): 145- 152.
WANG J Q , LEI W N , XUE Z M , et al. Research progress on synthesis and application of graphene reinforced metal matrix composites[J]. Journal of Materials Engineering, 2018, 46 (12): 18- 27.
doi: 10.11868/j.issn.1001-4381.2017.001534
26
WU K Y , FENG Y , LI Y S , et al. S-doped reduced graphene oxide: a novel peroxidase mimetic and its application in sensitive detection of hydrogen peroxide and glucose[J]. Analytical and Bioanalytical Chemistry, 2020, 412, 5477- 5487.
doi: 10.1007/s00216-020-02767-6
27
LIEN C W , HUANG C C , CHANG H T . Peroxidase-mimic bismuth-gold nanoparticles for determining the activity of thrombin and drug screening[J]. Chemical Communications, 2012, 48 (64): 7952- 7959.
doi: 10.1039/c2cc32833j
28
MOHAMED E , KIM J , ROSE N , et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage[J]. Science, 2002, 295, 469- 472.
doi: 10.1126/science.1067208
29
SUSUMU K , RYO K , SHIN-ICHIRO N . Functional porous coordination polymers[J]. Angewandte Chemie International Edition, 2004, 43 (18): 2334- 2375.
doi: 10.1002/anie.200300610
30
ZHAO Z H , HUANG Y J , LIU W R , et al. Immobilized glucose oxidase on boronic acid-functionalized hierarchically porous mof as an integrated nanozyme for one-step glucose detection[J]. ACS Sustainable Chemistry & Engineering, 2020, 8, 4481- 4488.
31
GLASS R S, PERONE S P, CIARLO D R, et al. Electrochemical sensor/detector system and method[P]. US5296125 A, 1992.
32
LIU T T , NIU X G , SHI L B , et al. Electrocatalytic analysis of superoxide anion radical using nitrogen-doped graphene supported Prussian Blue as a biomimetic superoxide dismutase[J]. Electrochimica Acta, 2015, 176, 1280- 1287.
doi: 10.1016/j.electacta.2015.07.155
33
WANG M Q , CUI Y , BAO S J , et al. Nanostructured cobalt phosphates as excellent biomimetic enzymes to sensitively detect superoxide anions released from living cells[J]. Biosensors & Bioelectronics, 2017, 87, 998- 1004.
34
ALIREZA K , MAHSA H I , JAVAD H , et al. Superior peroxidase mimetic activity of WS2 nanosheets/silver nanoclusters composite: colorimetric, fluorometric and electrochemical studies[J]. Journal of Colloid and Interface Science, 2018, 515, 39- 49.
doi: 10.1016/j.jcis.2018.01.013
35
WANG Z , CHENA Y , DONG W , et al. Copper (Ⅱ)-ploy-L-histidine functionalized multi walled carbon nanotubes as efficient mimetic enzyme for sensitive electrochemical detection of salvianic acid A[J]. Biosensors and Bioelectronic, 2018, 121, 257- 264.
doi: 10.1016/j.bios.2018.09.007
36
JUNG H S , CHEN X Q , KIM J S , et al. Recent progress in luminescent and colorimetric chemosensors for detection of thiols[J]. Chemical Society Reviews, 2013, 42 (14): 6019- 6031.
doi: 10.1039/c3cs60024f
37
PANDEY P C , PANDEY A K . Tetrahydrofuran hydroperoxide mediated synthesis of Prussian blue nanoparticles: a study of their electrocatalytic activity and intrinsic peroxidase-like behavior[J]. Electrochimica Acta, 2014, 125, 465- 472.
doi: 10.1016/j.electacta.2014.01.126
38
ZHENG A X , CONG Z X , WANG J R , et al. Highly-efficient peroxidase-like catalytic activity of graphene dots for biosensing[J]. Biosensors and Bioelectronics, 2013, 49, 519- 524.
doi: 10.1016/j.bios.2013.05.038
39
CHILDS S , HAROUNE N , WILLIAMS L , et al. Determination of cellular glutathione: glutathione disulfide ratio in prostate cancer cells by high performance liquid chromatography with electrochemical detection[J]. Journal of Chromatography A, 2016, 1437, 67- 73.
doi: 10.1016/j.chroma.2016.01.050
40
WANG H , LIANG S C , ZHANG Z M , et al. 3-iodoacetylaminobenzanthrone as a fluorescent derivatizing reagent for thiols in high-performance liquid chromatography[J]. Analytica Chimica Acta, 2004, 512 (2): 281- 286.
doi: 10.1016/j.aca.2004.03.002
41
KATRUSIAK A E , PATERSON P G , KAMENCIC H , et al. Pre-column derivatization high-performance liquid chromatographic method for determination of cysteine, cysteinyl-glycine, homocysteine and glutathione in plasma and cell extracts[J]. Journal of Chromatography B, 2001, 758 (2): 207- 212.
doi: 10.1016/S0378-4347(01)00182-7
42
TSIKAS D , RAIDA M , SANDMANN J , et al. Electrospray ionization mass spectrometry of low-molecular-mass S-nitroso compounds and their thiols[J]. Journal of Chromatography B, 2000, 742 (1): 99- 108.
doi: 10.1016/S0378-4347(00)00141-9
43
NIU L Y , GUAN Y S , CHEN Y Z , et al. BODIPY-based ratiometric fluorescent sensor for highly selective detection of glutathione over cysteine and homocysteine[J]. Journal of the American Chemical Society, 2012, 134 (46): 18928- 18931.
doi: 10.1021/ja309079f
44
CHEN X , KO S K , KIM M J , et al. A thiol-specific fluorescent probe and its application for bioimaging[J]. Chemical Communications, 2010, 46 (16): 2751- 2753.
doi: 10.1039/b925453f
45
LEE P T , GONCALVES L M , COMPTON R G . Electrochemical determination of free and total glutathione in human saliva samples[J]. Sensors and Actuators B, 2015, 221, 962- 968.
doi: 10.1016/j.snb.2015.07.050
46
XIANYU Y L , XIE Y Z Y , WANG N X , et al. A dispersion-dominated chromogenic strategy for colorimetric sensing of glutathione at the nanomolar level using gold nanoparticles[J]. Small, 2015, 11 (41): 5510- 5514.
doi: 10.1002/smll.201500903
47
MA Y H , ZHANG Z Y , REN C L , et al. A novel colorimetric determination of reduced glutathione in A549 cells based on Fe3O4 magnetic nanoparticles as peroxidase mimetics[J]. Analyst, 2012, 137, 485- 489.
doi: 10.1039/C1AN15718C
48
XIA F , SHI Q F , NAN Z D . Facile synthesis of Cu-CuFe2O4 nanozymes for sensitive assay of H2O2 and GSH[J]. Dalton Trans, 2020, 49, 12780- 12792.
doi: 10.1039/D0DT02395G
49
JIANG C F , ZHANG C , SONG J , et al. Cytidine-gold nanoclusters as peroxidase mimetic for colorimetric detection of glutathione (GSH), glutathione disulfide (GSSG) and glutathione reductase (GR)[J]. Spectrochimica Acta: Part A, 2020, 15, 119316.
50
JIN P , NIU X , ZHANG F , et al. Stable and reusable light-responsive reduced covalent organic framework (COF-300-AR) as a oxidase-mimicking catalyst for GSH detection in cell lysate[J]. ACS Applied Materials & Interfaces, 2020, 12, 20414- 20422.
51
GAO L Z , ZHUANG J , NIE L , et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles[J]. Nature Nanotechnology, 2007, 2, 577- 583.
doi: 10.1038/nnano.2007.260
52
CHEN W , CHEN J , LIU A L , et al. Peroxidase-like activity of cupric oxide nanoparticle[J]. ChemCatChem, 2011, 3 (7): 1151- 1154.
doi: 10.1002/cctc.201100064
53
MITRA K , GHOSH A B , SARKAR A , et al. Colorimetric estimation of human glucose level using γ-Fe2O3 nanoparticles: an easily recoverable effective mimic peroxidase[J]. Biochemical & Biophysical Research Communications, 2014, 451 (1): 30- 35.
54
CHEN W , CHEN J , FENG Y B , et al. Peroxidase-like activity of water-soluble cupric oxide nanoparticles and its analytical application for detection of hydrogen peroxide and glucose[J]. Analyst, 2012, 137, 1706- 1712.
doi: 10.1039/c2an35072f
55
LU C , LIU X J , LI Y F , et al. Multifunctional janus hematite-silica nanoparticles: Mimicking peroxidase-like activity and sensitive colorimetric detection of glucose[J]. ACS Applied Materials & Interfaces, 2015, 7 (28): 15395- 15402.
56
YUAN A , LU Y , ZHANG X , et al. Two-dimensional iron MOF nanosheet as a highly efficient nanozyme for glucose biosensing[J]. Journal of Materials Chemistry B, 2020, 8, 9295- 9303.
doi: 10.1039/D0TB01598A
57
YIN X , LIU P , XU X , et al. Breaking the pH limitation of peroxidase-like CoFe2O4 nanozyme via vitriolization for one-step glucose detection at physiological pH[J]. Sensors and Actuators B, 2021, 328, 129033.
doi: 10.1016/j.snb.2020.129033
58
ZHANG M H , YUAN R , CHAI Y Q , et al. A biosensor for cholesterol based on gold nanoparticles-catalyzed luminol electrogenerated chemiluminescence[J]. Biosensors and Bioelectronics, 2012, 32, 288- 292.
doi: 10.1016/j.bios.2011.12.008
59
LIU J B , HU X N , HOU S , et al. Au@Pt core/shell nanorods with peroxidase- and ascorbate oxidase-like activities for improved detection of glucose[J]. Sensor and Actuators B, 2012, 166/167, 708- 714.
doi: 10.1016/j.snb.2012.03.045
60
GUAN H , SONG Y , HAN B L , et al. Colorimetric detection of cholesterol based on peroxidase mimetic activity of GoldMag nanocomposites[J]. Spectrochimica Acta: Part A, 2020, 241, 118675.
doi: 10.1016/j.saa.2020.118675
61
HONG C , ZHANG X , WU C , et al. On-site colorimetric detection of cholesterol based on polypyrrole nanoparticles[J]. ACS Applied Materials & Interfaces, 2020, 12 (49): 54426- 54432.
WANG Z H , SHEN L . Research progress of manganese catalase and its mimic[J]. Journal of Hangzhou Normal University (Natural Sciences Edition), 2006, 5 (6): 465- 468.
doi: 10.3969/j.issn.1674-232X.2006.06.006
63
BAI L , JIANG W , SANG M , et al. Magnetic microspheres with polydopamine encapsulated ultra-small noble metal nanocrystals as mimetic enzymes for the colorimetric detection of H2O2 and glucose[J]. Journal of Materials Chemistry B, 2019, 7, 4568- 4580.
doi: 10.1039/C9TB00755E
64
LIU X , QIN J , ZHANG X , et al. The mechanisms of HSA@PDA/Fe nanocomposites enhanced nanozyme activity and their application for the intracellular H2O2 detection[J]. Nanoscale, 2020, 12, 24206- 24213.
doi: 10.1039/D0NR05732K
65
LIANG M M , FAN K L , PAN Y , et al. Fe3O4 magnetic nanoparticle peroxidase mimetic-based colorimetric assay for the rapid detection of organophosphorus pesticide and nerve agent[J]. Anal Chem, 2013, 85, 308- 312.
doi: 10.1021/ac302781r
66
GUAN G J , YANG L , MEI Q S , et al. Chemiluminescence switching on peroxidase-like Fe3O4 nanoparticles for selective detection and simultaneous determination of various pesticides[J]. Analytical Chemistry, 2012, 84, 9492- 9497.
doi: 10.1021/ac302341b
67
AMAR P , SAPNA B , VINITA H , et al. Nano-interface driven electrochemical sensor for pesticides detection based on the acetylcholinesterase enzyme inhibition[J]. International Journal of Biological Macromolecules, 2020, 164, 3943- 3952.
doi: 10.1016/j.ijbiomac.2020.08.215
68
LIU J W , LU Y . A colorimetric lead biosensor using DNA zyme-directed assembly of gold nanoparticles[J]. Journal of the American Chemical Society, 2003, 125, 6642- 6643.
doi: 10.1021/ja034775u
69
LIU J W , LU Y . Accelerated color change of gold nanoparticles assembled by DNAzymes for simple and fast colorimetric Pb2+ detection[J]. Journal of the American Chemical Society, 2004, 126, 12298- 12305.
doi: 10.1021/ja046628h
70
LIU J W , LU Y . Stimuli-responsive disassembly of nanoparticle aggregates for light-up colorimetric sensing[J]. Journal of the American Chemical Society, 2005, 127, 12677- 12683.
doi: 10.1021/ja053567u
71
RONALD R B . Molecular biology: making catalytic DNAs[J]. Science, 2000, 290, 2095- 2096.
doi: 10.1126/science.290.5499.2095
72
AUGUSTINE A B C , PERUMAL P . Enhanced peroxidase mimetic activity of magnetic porous carbon (MPC) utilized in colorimetric sensing of Hg(Ⅱ) ions in aqueous medium[J]. ChemistrySelect, 2020, 5, 11029- 11036.
doi: 10.1002/slct.202002743
73
YANG J Y , JIA X D , WANG X Y , et al. Mercury speciation based on mercury-stimulated peroxidase mimetic activity of gold nanoparticles[J]. Analyst, 2020, 145, 5200- 5205.
doi: 10.1039/D0AN00803F
74
KOU B B , CHAI Y Q , YUAN Y L , et al. Dynamical regulation of enzyme cascade amplification by a regenerated DNA nanotweezer for ultrasensitive electrochemical DNA detection[J]. Analytical Chemistry, 2018, 90 (18): 10701- 10706.
doi: 10.1021/acs.analchem.8b00477
75
LI A J , XIANG Y , ZHANG L , et al. Dynamic DNA self-assembly activated hemin-mimetic enzyme system for versatile fluorescent biosensing[J]. Sensors & Actuators B, 2019, 288, 757- 762.