Hot Deformation Behaviors and Microstructure Evolution of GH4049 Alloy
LI Qing1, GUO Hong-zhen1, WANG Yan-wei2, ZHAO Zhang-long1, YAO Ze-kun1
1. School of Materials and Engineering, Northwestern Polytechnical University, Xi'an 710072, China;
2. AVIC Special Metal (Xi'an) Corporation, Xi'an 710080, China
Abstract:The GH4049 alloy's true stress-strain curves were constructed by data from the hot compression test carried out by thermal mechanical simulator of Gleeble-1500 in the temperature of 1090-1180℃ at strain rates of 0.1-50s-1. The material constants of the alloy in different deformation conditions were obtained by the linear regression of peak stress, and constitutive equation of GH4049 alloy was established through non-linear regression. The results show that, as deformation temperature increases, microstructure had a more full dynamic recrystallization and grains size increases; as the strain rate increases, the grains are more uniform and grains size first decreases and then increases.
郭建亭. 高温合金材料学[M]. 北京:科学出版社,2010.17.GUO J T.Materials Science and Engineering for Superalloys[M].Beijing:Science Press,2010.17.
[2]
于慧臣,吴学仁. 航空发动机设计用材料数据手册[M]. 北京:国防工业出版社,1993.613-614.YU H C,WU X R.Handbook of Material Data for Aircraft Engine Design[M].Beijing:National Defense Industry Press,1993.613-614.
[3]
KANG F W, ZHANG G Q, LI Z. Hot deformation of spray formed nickel-base superalloy using processing maps[J]. Transactions of Nonferrous Metals Society of China,2008,18(3):531-535.
[4]
刘智恩. 材料科学基础[M]. 西安:西北工业大学出版社,2003. 273.LIU Z E.Fundamentals of Materials Science[M].Xi'an:Northwestern Polytechnical University Press,2003.273.
[5]
SELLARS C M. Modelling microstructural development during hot rolling[J]. Materials Science and Technology,1990,6(11):1072-1081.
[6]
唐泽,杨合,孙志超,等. TA15钛合金高温变形微观组织演变分析与数值模拟[J]. 中国有色金属学报,2008,18(4):722-727.TANG Z, YANG H, SUN Z C, et al. Microstructure evolution and numerical simulation of TA15 titanium alloy during hot compressive deformation[J]. The Chinese Journal of Nonferrous Metals,2008,18(4):722-727.
[7]
熊爱明,林海,李淼泉. TC6钛合金盘等温锻造时晶粒尺寸的数值模拟[J]. 中国机械工程,2003,14(9):791-794.XIONG A M, LIN H, LI M Q. Numerical simulation of grain evolution during isothermal forging of a TC6 titanium alloy[J]. China Mechanical Engineering,2003,14(9):791-794.
[8]
王艳,干明家,蔡大勇,等.高强度奥氏体不锈钢的热变形行为及其热加工图[J].材料热处理学报,2005,26(4):65-69.WANG Y, GAN M J, CAI D Y, et al. Hot deformation behavior and its processing map of a new austenitic stainless steel[J]. Transactions of Materials and Heat Treatment,2005,26(4):65-69.
[9]
GRONOSTAJSKI Z. The constitutive equations for FEM analysis[J]. Journal of Materials Processing Technology,2000,106(1-3):40-44.
[10]
JONAS J J, SELLARS C M, TEGART W J M. Strength and structure under hot working conditions[J]. Metallurgical Review,1969,14(5):1-24.
[11]
SELLARS C M, MCTEGART W J. On the mechanism of hot deformation[J]. Acta Metallurgica,1966,14:1136-1138.
[12]
梁业,郭鸿镇,刘鸣,等. TA15合金高温本构方程的研究[J]. 塑性工程学报,2008,15(4):150-154. LIANG Y, GUO H Z, LIU M, et al. Study on constitutive equations for hot deformation of TA15 alloy[J]. Journal of Plasticity Engineering,2008,15(4):150-154.
[13]
刘鹏飞,刘东,罗子健,等. GH761合金的热变形行为与动态再结晶模型[J]. 稀有金属材料与工程,2009,38(2):275-280. LIU P F, LIU D, LUO Z J, et al. Flow behavior and dynamic recrystallization model for GH761 superalloy during hot deformation[J]. Rare Metal Materials and Engineering,2009,38(2):275-280.
[14]
SHEN G S, SEMIATIN S L, SHIVPURI R. Modeling microstructural development during the forging of Waspaloy[J]. Metallurgical and Materials Transaction A,1995,26(7):1795-1803.