Please wait a minute...
 
材料工程  2016, Vol. 44 Issue (6): 98-103    DOI: 10.11868/j.issn.1001-4381.2016.06.015
  测试与表征 本期目录 | 过刊浏览 | 高级检索 |
孔边倒角和预腐蚀作用下航空铝合金疲劳性能及断裂机理研究
周松1,2, 王磊1, 马闯1, 杨林青1, 许良1, 回丽1
1. 沈阳航空航天大学 航空制造工艺数字化国防重点学科实验室, 沈阳 110136;
2. 东北大学 机械工程与自动化学院, 沈阳 110004
Fatigue Properties and Fracture Mechanism of Aluminum Alloy with Orifice Chamfer and Pre-corrosion Damage
ZHOU Song1,2, WANG Lei1, MA Chuang1, YANG Lin-qing1, XU Liang1, HUI Li1
1. Key Laboratory of Fundamental Science for National Defense of Aeronautical Digital Manufacturing Process, Shenyang Aerospace University, Shenyang 110136, China;
2. Department of Mechanical Engineering and Automation, Northeastern University, Shenyang 110004, China
全文: PDF(11341 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 基于航空铝合金带孔结构材料在服役过程中常因腐蚀损伤而导致疲劳断裂问题,通过对未腐蚀和预腐蚀24h后的7075铝合金双孔未倒角和双孔倒角试样进行疲劳实验研究,分析腐蚀预损伤和孔边倒角对试件疲劳性能的影响及疲劳断裂特性差异。结果表明:腐蚀预损伤对7075铝合金材料疲劳寿命的影响显著,双孔未倒角和倒角试样预腐蚀24h后试样中值疲劳寿命比未腐蚀试样最大下降了31.74%和26.92%;孔边倒角对材料疲劳寿命有一定的影响,未腐蚀和预腐蚀24h孔边倒角试样中值疲劳寿命比未倒角试样最大下降了28.02%和15.36%,主要原因是由于孔边倒角过程中产生加工刀痕,引入了"预损伤",且倒角后疲劳裂纹萌生位置变多,导致材料发生疲劳断裂的概率变大。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周松
王磊
马闯
杨林青
许良
回丽
关键词 铝合金孔边倒角腐蚀预损伤腐蚀坑疲劳断裂    
Abstract:Fatigue fracture often occurs because of the corrosion damage to aerospace structural aluminum alloy with holes. Fatigue tests of 7075 aluminum alloy of both unchamfered and chamfered double-hole specimens under uncorrosion and 24h pre-corrosion were carried out. The influence of both pre-corrosion damage and orifice chamferer on fatigue properties and the differences of fatigue fracture characteristics were analyzed. The results show that the effect on fatigue life of pre-corrosion damage is significant. Median fatigue lives of both unchamfered and chamfered double-hole specimens under 24h pre-corrosion decrease about 31.74% and 26.92% compared with uncorrosion specimens. The orifice chamferer have a certain effect on fatigue life of both uncorrosion and 24h pre-corrosion specimens, with median fatigue lives decreased about 28.02% and 15.36% compared with unchamfered specimens, the main reason is due to the stress concentration after orifice chamfered, on the other hand, cutting marks lead to pre-damage during the orifice chamfering process which will result in an increase of the fatigue crack initiation sites and the fracture probability.
Key wordsaluminum alloy    orifice chamfer    pre-corrosion damage    corrosion pit    fatigue    fracture
收稿日期: 2015-05-15      出版日期: 2016-06-13
1:  V252  
  V216  
通讯作者: 回丽(1965-),女,教授,博士后,从事结构强度及完整性评定方面的研究,联系地址:辽宁省沈阳市沈北新区道义南大街37号 沈阳航空航天大学航空制造工艺数字化国防重点学科实验室(110136),E-mail:syhuili@126.com     E-mail: syhuili@126.com
引用本文:   
周松, 王磊, 马闯, 杨林青, 许良, 回丽. 孔边倒角和预腐蚀作用下航空铝合金疲劳性能及断裂机理研究[J]. 材料工程, 2016, 44(6): 98-103.
ZHOU Song, WANG Lei, MA Chuang, YANG Lin-qing, XU Liang, HUI Li. Fatigue Properties and Fracture Mechanism of Aluminum Alloy with Orifice Chamfer and Pre-corrosion Damage. Journal of Materials Engineering, 2016, 44(6): 98-103.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.06.015      或      http://jme.biam.ac.cn/CN/Y2016/V44/I6/98
[1] 周松,谢里阳,回丽,等. 喷丸强化对2XXX铝合金疲劳寿命的影响[J].材料工程,2014,(12):86-91. ZHOU S, XIE L Y, HUI L, et al. Influence of shot peening on fatigue life of 2xxx aluminum alloy[J]. Journal of Materials Engineering, 2014,(12):86-91.
[2] 马少华,回丽,周松,等. 腐蚀环境对预腐蚀铝合金腐蚀疲劳性能的影响[J].材料工程,2015,43(2):91-95. MA S H, HUI L, ZHOU S, et al. Influence of corrosion environments on corrosion fatigue property of pre-corroded aluminum alloy[J]. Journal of Materials Engineering, 2015,43(2):91-95.
[3] 陈跃良,卞贵学,郁大照. 预腐蚀铝合金典型螺栓单搭接件疲劳寿命研究[J]. 工程力学,2012,29(5):251-256. CHEN Y L, BIAN G X, YU D Z. Study on fatigue life of pre-corrosion aluminum alloy typical single bolted lap joints[J]. Engineering Mechanics,2012,29(5):251-256.
[4] 胡本润,马少俊,童第华,等. 7050铝合金锻件缺陷容限值试验方法研究[J].航空材料学报,2015,35(1):82-86. HU B R, MA S J, TONG D H, et al. Test methods for determining flaw tolerance value of 7050 aluminum alloy forging[J]. Journal of Aeronautical Materials, 2015,35(1):82-86.
[5] SANKARAN K K, PEREZ R, JATA K V. Effects of pitting corrosion on the fatigue behavior of aluminum alloy 7075-T6:modeling and experimental studies[J]. Materials Science and Engineering, 2001, 297(1):223-229.
[6] PAO P S, GILL S J, FENG C R. On fatigue crack initiation from corrosion pits in 7075-T7351 aluminum alloy[J].Scripta Materialia, 2000, 43(5):391-396.
[7] 胡家林,陈跃良,张玎,等. 基于图像的腐蚀损伤及疲劳寿命研究[J]. 航空学报,2010,31(1):131-135. HU J L, CHEN Y L, ZHAN D, et al. Analysis of corrosion damage and fatigue life based on corrosion image[J]. Acta Aeronautica et Astronautica Sinica, 2010,31(1):131-135.
[8] 张有宏,吕国志,陈跃良. LY12-CZ铝合金预腐蚀及疲劳损伤研究[J].航空学报,2005,26(6):779-782. ZHANG Y H, LU G Z, CHEN Y L. Predicting fatigue life from precorrosion LY12-CZ aluminium test[J]. Acta Aeronautica et Astronautica Sinica, 2005,26(6):779-782.
[9] DUQUESNAY D L, UNDERHILL P R, BRITT H J. Fatigue crack growth from corrosion damage in 7075-T6511 aluminum alloy under aircraft loading[J]. International Journal of Fatigue, 2003,25:371-377.
[10] DOLLEY E J,LEE B,WEI R P. Effect of pitting corrosion on fatigue life[J]. Fatigue and Fracture of Engineering Materials and Structures,2000,23(7):555-560.
[11] GRUENBERG K M, CRAIG B A, HILLBERRY B M, et al. Predicting fatigue life of pre-corrosion 2024-T3 aluminum[J]. International Journal of Fatigue, 2004, 26(6):629-640.
[12] GRUENBERG K M, CRAIG B A, HILLBERRY B M, et al. Predicting fatigue life of pre-corrosion 2024-T3 aluminum from breaking load tests[J]. International Journal of Fatigue, 2004, 26(6):615-627.
[13] MALKI B, BAROUX B. Computer simulation of the corrosion pit growth[J].Corrosion Science, 2005, 47(1):171-182.
[14] RAMANA M P, LONG F, MATHEW J P. Computational simulation of multi-pit corrosion process in materials[J]. Computational Materials Science, 2008, 41(3):255-265.
[15] KIMBERLI J, SACHIN R S, PAUL N C, et al. Effect of prior corrosion on short crack behavior in 2024-T3 aluminum alloy[J]. Corrosion Science, 2008,50(9):2588-2595.
[16] 刘建中,陈勃,叶序彬,等.含腐蚀预损伤铝合金2024-T62的疲劳断裂行为及基于断裂力学的寿命预测[J].航空学报,2011,32(1):107-116. LIU J Z, CHEN B, YE X B, et al. Fatigue and crack growth behavior of pre-corrosion aluminum alloy 2024-T62 and its life prediction based on fracture mechanics[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(1):107-116.
[1] 刘慧丛, 李峰, 张建周, 姬振江, 王萌, 朱立群. 硅溶胶对LY12CZ铝合金硼硫酸阳极氧化的影响[J]. 材料工程, 2016, 44(7): 49-53.
[2] 王小京, 刘彬, 周慧玲, 王俭辛, 刘宁, 李天阳. P对Sn-Bi合金组织与性能的影响[J]. 材料工程, 2016, 44(7): 113-118.
[3] 郝亚鑫, 王文, 徐瑞琦, 乔柯, 李天麒, 王快社. 焊后热处理对7A04铝合金水下搅拌摩擦焊接接头组织性能的影响[J]. 材料工程, 2016, 44(6): 70-75.
[4] 冯娟, 顾轶卓, 李敏, 王绍凯, 张佐光. 弱电流对碳纤维/环氧树脂界面黏结性能的影响[J]. 材料工程, 2016, 44(5): 79-85.
[5] 祁星, 宋仁国, 祁文娟, 金骥戎, 王超, 李海. pH值对7050铝合金膜致应力和应力腐蚀敏感性的影响[J]. 材料工程, 2016, 44(5): 86-92.
[6] 胡春燕, 刘新灵, 陶春虎, 曹春晓. 气膜孔分布对DD6单晶高温合金持久性能及断裂行为的影响[J]. 材料工程, 2016, 44(5): 93-100.
[7] 伍灿, 沈火明, 邓莎莎, 刘娟, 彭金方. 5083铝合金扭动微动磨损实验研究[J]. 材料工程, 2016, 44(4): 71-75.
[8] 文磊, 王亚明, 金莹. 表面纳米化-微弧氧化复合涂层对铝合金拉伸性能影响机制研究[J]. 材料工程, 2016, 44(3): 15-20.
[9] 谢孝昌, 李旭东, 汤春峰, 付书红. 直接时效对GH4169合金应力集中敏感性的影响[J]. 材料工程, 2016, 44(2): 88-93.
[10] 黄本生, 陈想, 陈勇彬, 李永斌. 石油钻杆材料G105在不同条件下的疲劳断裂[J]. 材料工程, 2016, 44(2): 107-114.
[11] 李滔, 周海涛, 王顺成, 戚文军, 郑开宏. 液固铸造4343/3003/4343铝合金复合锭的界面组织[J]. 材料工程, 2016, 44(1): 19-25.
[12] 仇琍丽, 高文理, 陆政, 冯朝辉. 7A85铝合金的热压缩流变行为与显微组织[J]. 材料工程, 2016, 44(1): 33-39.
[13] 刘文辉, 何圳涛, 唐昌平, 陈宇强. 变形条件对2519A铝合金动态力学性能与组织演化的影响[J]. 材料工程, 2016, 44(1): 47-53.
[14] 吕世泉, 何国球, 沈月, 田丹丹, 刘晓山, 林国斌, 任敬东, 胡杰. 菱形加载路径下35CrMoA钢的微动疲劳行为[J]. 材料工程, 2016, 44(1): 96-102.
[15] 晏忠钠, 车彦慧, 冯利邦, 强小虎, 刘艳花. 超疏水铝合金表面的防覆冰和防黏附行为[J]. 材料工程, 2015, 43(9): 25-29.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn