Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (11): 25-36    DOI: 10.11868/j.issn.1001-4381.2017.000682
  综述 本期目录 | 过刊浏览 | 高级检索 |
三维编织预成型体的织造及三维编织复合材料细观结构研究进展
韩振宇, 梅海洋, 付云忠, 富宏亚
哈尔滨工业大学 机电工程学院, 哈尔滨 150001
Research Progress on Preform Forming and Microstructure of 3D Braided Composites
HAN Zhen-yu, MEI Hai-yang, FU Yun-zhong, FU Hong-ya
School of Mechatronic Engineering, Harbin Institute of Technology, Harbin 150001, China
全文: PDF(4930 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 三维编织复合材料由于具有优异的力学性能而得到了广泛关注,这些性能的获得离不开其具有的特殊结构,本文从预成型体织造及复合材料细观结构两个方面进行综述。在织造技术方面,对当前编织方法及设备进行了介绍,并评述了近年来对编织新方法的探索以及对编织过程的研究。在细观结构方面,详述了细观结构研究由抽象到具体的发展历程,指出当前模型对于纤维束变形的表征的不足之处,并对两种先进的建模方法进行了介绍。最后指出今后的研究中可进一步建立三维编织结构的表征方法以探索新型编织结构,研究纤维束变形机理以获得更为真实的细观结构模型。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韩振宇
梅海洋
付云忠
富宏亚
关键词 复合材料三维编织预成型体细观结构    
Abstract:Three-dimensional braided composites have attracted extensive attention due to their excellent mechanical properties, which cannot be separated from their special structures. This paper aimed to provide a review on the research of 3D braided preform forming technology and the microstructure of 3D braided composites. In the aspect of forming technology, braiding methods and equipment currently used were introduced, then, research on new braiding method and braiding process was also introduced. In the aspect of its microstructure, detailed procedures of research from abstract to specification were presented, and the shortcoming of current microstructural model's characterization of fiber bundles deformation was pointed out, and two advanced modeling methods were introduced. Finally, it was pointed out that the methodology to characterize 3D braided structures can be further established in order to explore novel structures. Also, the mechanism of yarn deformation should be studied so as to get the microstructure model which is closer to the reality.
Key wordscomposites    3D braiding    preform    microstructure
收稿日期: 2017-06-01      出版日期: 2018-11-19
中图分类号:  TH33  
基金资助: 
通讯作者: 富宏亚(1963-),男,教授,博士,主要从事复合材料纤维缠绕/铺放/编织成型技术,非标数控设备的研制,智能数控系统的开发等方面的研究工作,E-mail:hongyafu@hit.edu.cn     E-mail: hongyafu@hit.edu.cn
引用本文:   
韩振宇, 梅海洋, 付云忠, 富宏亚. 三维编织预成型体的织造及三维编织复合材料细观结构研究进展[J]. 材料工程, 2018, 46(11): 25-36.
HAN Zhen-yu, MEI Hai-yang, FU Yun-zhong, FU Hong-ya. Research Progress on Preform Forming and Microstructure of 3D Braided Composites. Journal of Materials Engineering, 2018, 46(11): 25-36.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.000682      或      http://jme.biam.ac.cn/CN/Y2018/V46/I11/25
[1] FLORENTINE R A. Apparatus for weaving a three-dimensional article:US 1982/4312261[P]. 1982-01-26.
[2] McCONNELL R F, POPPER P. Complex shaped braided structures:US 1988/4719837[P]. 1988-01-19.
[3] BROOKSTEIN D S. Interlocked fiber architecture:braided and woven[C]//35th International SAMPE Symposium and Exhibition.Long Beach, CA:SAMPE, 1990:746-756.
[4] 陈利,孙颖,马明. 高性能纤维预成形体的研究进展[J]. 中国材料进展, 2012, 31(10):21-29. CHEN L, SUN Y, MA M. Development of high performance fiber preforms[J]. Materials China, 2012, 31(10):21-29.
[5] SCHNEIDER M, PICKETT A K, WULFHORST B. A new rotary braiding machine and CAE procedures to produce efficient 3d-braided textiles for composites[C]//45th International SAMPE Symposium and Exhibition. Long Beach, CA:SAMPE, 2000:266-276.
[6] MUNGALOV D, BOGDANOVICH A. Complex shape 3D braided composite preforms:structural shapes for marine and aerospace[J]. SAMPE Journal, 2004, 40(3):7-21.
[7] MUNGALOV D, DUKE P, BOGDANOVICH A. High performance 3-D braided fiber preforms:design and manufacturing advancements for complex composite structures[J]. SAMPE Journal, 2007, 43(6):53-60.
[8] 刘振国. 高性能复合材料管件制作工艺的比较及三维编织技术的应用[J]. 材料工程, 2009(增刊2):109-112. LIU Z G. Study on comparation of manufacturing methods of high performance composites pipes and application of 3D braiding technology[J]. Journal of Materials Engineering, 2009(Suppl 2):109-112.
[9] TADA M, UOZUMI T, NAKAI A, et al. Structure and machine braiding procedure of coupled square braids with various cross sections[J]. Composites Part A:Applied Science and Manufacturing, 2001, 32(10):1485-1489.
[10] KO F K, AMALRIC E, SCHREIBER F. Three dimensional braiding:from magna weave to hexagonal braiding[C]//1st Joint Canadian and American Technical Conference, 24th Annual of ASC and CACSMA. Newark, DE:ASC, 2009:15-17.
[11] SCHREIBER F, KO F K, YANG H J, et al. Novel three-dimensional braiding approach and its products[C]//17th International Conference on Composite Materials. Edinburgh, UK:ICCM, 2009:27-31.
[12] SCHREIBER F, THEELEN K, SCHULTE S. 3D-hexagonal braiding:possibilities in near-net shape preform production for lightweight and medical applications[C]//18th International Conference on Composite Materials. Jeju Island, Korea:ICCM, 2011:21-26.
[13] 刘兆麟,程灿灿,刘丽芳,等. 变截面三维编织复合材料减纱工艺与弯曲性能[J]. 复合材料学报, 2011, 28(6):118-124. LIU Z L, CHENG C C, LIU L F, et al. Reducing-yarn technique and flexural properties of 3D braided composites with tapered cross-section[J]. Acta Materiae Compositae Sinica, 2011, 28(6):118-124.
[14] LIU Z L, LIU L F, YU J. Net shape preparation and bending properties of tapered three-dimensional braided composites[J]. Textile Research Journal, 2012, 82(18):1870-1879.
[15] 冯伟,马文锁. 编织几何结构的群论分析[J]. 科学通报, 2005, 50(20):2300-2304. FENG W, MA W S. Group theory analysis of braided geometry structures[J]. Chinese Science Bulletin, 2005, 50(20):2300-2304.
[16] 马文锁,任小中. 基于空间群P3对称性的一种新型三维编织材料[J]. 科学通报, 2011, 56(8):598-603. MA W S, REN X Z. Geometrical structure and fiber volume fraction of 3D braided materials based on space group P3 symmetry[J]. Chinese Science Bulletin, 2011, 56(8):598-603.
[17] MA W S, MA Z Y, ZHU J X. Processing technique and geometric model of an imperfect orthogonal 3D braided material[J]. Journal of Industrial Textiles, 2017, 47(3):297-309.
[18] GRISHANOV S, MESHKOV V, OMELCHNKO A. A topological study of textile structures part Ⅰ:an introduction to topological methods[J]. Textile Research Journal, 2009, 79(8):702-713.
[19] GRISHANOV S, MESHKOV V, OMELCHNKO A. A topological study of textile structures part Ⅱ:topological invariants in application to textile structures[J]. Textile Research Journal, 2009, 79(9):822-836.
[20] GUYADER G, GABOR A, HAMELIN P. Analysis of 2D and 3D circular braiding processes:modeling the interaction between the process parameters and the preform architecture[J]. Mechanism and Machine Theory, 2013, 69:90-104.
[21] NA W J, AHN H C, JEON S Y, et al. Prediction of the braid pattern on arbitrary-shaped mandrels using the minimum path condition[J]. Composites Science and Technology, 2014, 91:30-37.
[22] Van RAVENHORST J H, AKKERMAN R. Circular braiding take-up speed generation using inverse kinematics[J]. Composites Part A:Applied Science and Manufacturing, 2014, 64:147-158.
[23] Van RAVENHORST J H, AKKERMAN R. A yarn interaction model for circular braiding[J]. Composites Part A:Applied Science and Manufacturing, 2016, 81:254-263.
[24] BRANSCOMB D J, BEALE D G. Fault detection in braiding utilizing low-cost USB machine vision[J].Journal of the Textile Institute, 2011, 102(7):568-581.
[25] MA G, BRANSCOMB D J, BEALE D G. Modeling of the tensioning system on a braiding machine carrier[J]. Mechanism and Machine Theory, 2012, 47:46-61.
[26] FABICH B, ROSIEPEN C, GRIES T. High quality braids-design for active tension control in carriers[C]//International SAMPE Technical Conference 2012. North Charleston, South Carolina:SAMPE, 2012:405-420.
[27] KO F K. Three-dimensional fabrics for composites-an introduction to the Magnaweave structure[C]//4th International Conference on Composite Materials. Tokyo, Japan:ICCM, 1982:1609-1616.
[28] MA C L, YANG J M, CHOU T W. Elastic stiffness of three-dimensional braided textile structural composites[C]//Composite Materials:Testing and Design (Seventh Conference). Philadelphia, USA:ASTM, 1986:404-421.
[29] YANG J M, MA C L, CHOU T W. Fiber inclination model of three-dimensional textile structural composites[J]. Journal of Composite Materials, 1986, 20(5):472-484.
[30] LI W, HAMMAD M, EL-SHIEKH A. Structural analysis of 3-D braided preforms for composites part Ⅰ:the four-step preforms[J]. Journal of the Textile Institute, 1990, 81(4):491-514.
[31] DU G W, CHOU T W, POPPER P. Analysis of three-dimensional textile preforms for multidirectional reinforcement of composites[J]. Journal of Materials Science, 1991, 26(13):3438-3448.
[32] DU G W, KO F K. Unit cell geometry of 3-D braided structures[J]. Journal of Reinforced Plastics and Composites, 1993, 12(7):752-768.
[33] 吴德隆,郝兆平. 五向编织结构复合材料的分析模型[J]. 宇航学报, 1993, 14(3):40-51. WU D L,HAO Z P. 5D braided structural composites[J]. Journal of Astronautics, 1993, 14(3):40-51.
[34] WU D L. Three-cell model and 5D braided structural composites[J]. Composites Science and Technology, 1996, 56(3):225-233.
[35] WANG Y Q, WANG A S D. On the topological yarn structure of 3-D rectangular and tubular braided preforms[J]. Composites Science and Technology, 1994, 51(4):575-586.
[36] WANG Y Q, WANG A S D. Geometric mapping of yarn structures due to shape change in 3-D braided composites[J]. Composites Science and Technology, 1995, 54(4):359-370.
[37] KALIDINDI S R, FRANCO E. Numerical evaluation of isostrain and weighted-average models for elastic moduli of three-dimensional composites[J]. Composites Science and Technology, 1997, 57(3):293-305.
[38] TANG Z X, POSTLE R. Mechanics of three-dimensional braided structures for composite materials part Ⅰ:fabric structure and fibre volume fraction[J]. Composite Structures, 2000, 49(4):451-459.
[39] 韩其睿,李嘉禄. 复合材料三维编织结构的单元体模型[J]. 复合材料学报, 1996, 13(3):76-80. HAN Q R, LI J L. Unit cell geometry of 3D braided structure of composites[J]. Acta Materiae Compositae Sinica, 1996, 13(3):76-80.
[40] 庞宝君,杜善义,王铎,等. 三维多向编织复合材料分析模型[J]. 哈尔滨工业大学学报, 1996(6):1-6. PANG B J, DU S Y, WANG D, et al. An analytical model of 3D multi-directionally braided composites[J]. Journal of Harbin Institute of Technology, 1996(6):1-6.
[41] 庞宝君,杜善义. 三维四向编织复合材料细观组织及分析模型[J]. 复合材料学报, 1999, 16(3):135-139. PANG B J, DU S Y. Mesostructure and modeling of three dimensional multidirectional composites[J]. Acta Materiae Compositae Sinica, 1999, 16(3):135-139.
[42] 李嘉禄,刘谦. 三维编织复合材料中纤维束走向的研究[J]. 纺织学报, 1999, 20(4):7-10. LI J L, LIU Q. A study on fibre tows' orientation for 3D braided composites[J]. Journal of Textile Research, 1999, 20(4):7-10.
[43] 李嘉禄,刘谦. 三维编织复合材料中纤维束横截面形状的研究[J]. 复合材料学报, 2001, 18(2):9-13. LI J L, LIU Q. Study on fiber tow's cross-section in 3D braided composites[J]. Acta Materiae Compositae Sinica, 2001, 18(2):9-13.
[44] 成玲,江笑婵,陈利,等. 三维编织复合材料断层剖面图像分析[J]. 天津工业大学学报, 2006, 25(5):3-6. CHENG L, JIANG X C, CHEN L, et al. Analyzing section image of 3-D braided composites[J]. Journal of Tianjin Polytechnic University, 2006, 25(5):3-6.
[45] CHEN L, TAO X M, CHOY C L. On the microstructure of three-dimensional braided performs[J]. Composites Science and Technology, 1999, 59(3):391-404.
[46] CHEN L, TAO X M, CHOY C L. Mechanical analysis of 3-D braided composites by the finite multiphase element method[J]. Composites Science and Technology, 1999, 59(16):2383-2391.
[47] 李金超,张一帆,孙菲,等. 三维五向编织复合材料的力学性能分析Ⅰ:细观结构模型[J]. 复合材料学报, 2009, 26(1):150-155. LI J C, ZHANG Y F, SUN F, et al. Mechanics analysis of three-dimensional five-directional braided composites Ⅰ:microstructural model[J]. Acta Materiae Compositae Sinica, 2009, 26(1):150-155.
[48] LI J C, CHEN L, ZHANG Y F, et al. Microstructure and finite element analysis of 3D five-directional braided composites[J]. Journal of Reinforced Plastics and Composites, 2012, 31(2):107-115.
[49] BYUN J H, CHOU T W. Process-microstructure relationships of 2-step and 4-step braided composites[J]. Composites Science and Technology, 1996, 56(3):235-251.
[50] 陈利,李嘉禄,李学明. 三维编织中纱线的运动规律分析[J]. 复合材料学报, 2002, 19(2):71-74. CHEN L, LI J L, LI X M. Analysis of the yarn movement in 3D braids[J]. Acta Materiae Compositae Sinica, 2002, 19(2):71-74.
[51] ZHENG X T, YE T Q. Microstructure analysis of 4-step three-dimensional braided composite[J]. Chinese Journal of Aeronautics, 2003, 16(3):142-150.
[52] 汪星明,邢誉峰. 三维编织复合材料研究进展[J]. 航空学报, 2010, 31(5):914-927. WANG X M, XING Y F. Developments in research on 3D braided composites[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(5):914-927.
[53] PANDEY R, HAHN H T. Visualization of representative volume elements for three-dimensional four-step braided composites[J]. Composites Science and Technology, 1996, 56(2):161-170.
[54] 王毅强,张立同,成来飞. 三维编织体复合材料空间几何结构的计算机模拟[J]. 航空材料学报, 2008, 28(2):95-98. WANG Y Q, ZHANG L T, CHENG L F. Computer geometry simulation of spatial structure of three-dimensional braided composites[J]. Journal of Aeronautical Materials, 2008, 28(2):95-98.
[55] 邵将,温卫东,崔海涛. 三维四步法编织复合材料结构的计算机仿真[J]. 南京航空航天大学学报, 2008, 41(1):36-40. SHAO J, WEN W D, CUI H T. Computer simulation of four-step three-dimensional braided composite structures[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2009, 41(1):36-40.
[56] 何红闯,杨连贺,陈利. 矩形组合截面四步法二次三维编织及其空间模型可视化[J]. 复合材料学报, 2010, 27(4):160-167. HE H C, YANG L H, CHEN L. 3D braiding technique of complex rectangular cross-section using twice four-step and visualization of 3D braided model[J]. Acta Materiae Compositae Sinica, 2010, 27(4):160-167.
[57] 张美忠,李贺军,李克智. 三维编织复合材料预制体孔隙的几何仿真[J]. 材料研究学报, 2007, 21(2):161-165. ZHANG M Z, LI H J, LI K Z. Geometric simulation of holes in preform of four-step 3D braided composite[J]. Chinese Journal of Materials Research, 2007, 21(2):161-165.
[58] MOHAJERJASBI S. More on the fiber architecture of 3D braided composites[J]. AIAA Journal, 1997:1027-1034.
[59] ZHANG C, XU X W. Finite element analysis of 3D braided composites based on three unit-cells models[J]. Composite Structures, 2013, 98(3):130-142.
[60] SUN W, LIN F, HU X. Computer-aided design and modeling of composite unit cells[J]. Composites Science and Technology, 2001, 61(2):289-299.
[61] ROBITAILLE F, LONG A C, JONES I A, et al. Automatically generated geometric descriptions of textile and composite unit cells[J]. Composites Part A:Applied Science and Manufacturing, 2003, 34(4):303-312.
[62] 杨振宇,卢子兴,刘振国,等. 三维四向编织复合材料力学性能的有限元分析[J]. 复合材料学报, 2005, 22(5):155-161. YANG Z Y, LU Z X, LIU Z G, et al. Finite element analysis of the mechanical properties of 3-D braided composites[J]. Acta Materiae Compositae Sinica, 2005, 22(5):155-161.
[63] 卢子兴,杨振宇,刘振国. 三维四向编织复合材料结构模型的几何特性[J]. 北京航空航天大学学报, 2006, 32(1):92-96. LU Z X, YANG Z Y, LIU Z G. Geometrical characteristics of structural model for 3-D braided composites[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(1):92-96.
[64] 徐焜,许希武. 四步法三维矩形编织复合材料的细观结构模型[J]. 复合材料学报, 2006, 23(5):154-160. XU K, XU X W. On the microstructure model of four-step 3D rectangular braided composites[J]. Acta Materiae Compositae Sinica, 2006, 23(5):154-160.
[65] 田金梅,邢誉峰. 一种新的三维四步编织复合材料几何模型及其在宏观弹性性能预测中的应用[J]. 航空学报, 2007, 28(1):130-134. TIAN J M, XING Y F. A new geometric model of 3D 4-step braided composites and its applications in macroscopic constant predictions[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(1):130-134.
[66] 徐焜,许希武. 三维五向编织复合材料宏细观力学性能分析[J]. 宇航学报, 2008, 29(3):1053-1058. XU K, XU X W. Mechanical analysis of 3D five-directional braided composites based on unit cell[J]. Journal of Astronautics, 2008, 29(3):1053-1058.
[67] XU K, XU X W. Finite element analysis of mechanical properties of 3D five-directional braided composites[J]. Materials Science and Engineering:A, 2008, 487:499-509.
[68] FANG G D, LIANG J, WANG Y, et al. The effect of yarn distortion on the mechanical properties of 3D four-directional braided composites[J]. Composites Part A:Applied Science and Manufacturing, 2009, 40(4):343-350.
[69] FANG G D, LIANG J, LU Q, et al. Investigation on the compressive properties of the three dimensional four-directional braided composites[J]. Composite Structures, 2011, 93(2):392-405.
[70] JIANG L L, ZENG T, YAN S, et al. Theoretical prediction on the mechanical properties of 3D braided composites using a helix geometry model[J]. Composite Structures, 2013, 100(5):511-516.
[71] XU K, QIAN X. Analytical prediction of the elastic properties of 3D braided composites based on a new multiunit cell model with consideration of yarn distortion[J]. Mechanics of Materials, 2016, 92:139-154.
[72] ZHANG C, XU X W, CHEN K. Application of three unit-cells models on mechanical analysis of 3D five-directional and full five-directional braided composites[J]. Applied Composite Materials, 2013, 20(5):803-825.
[73] 朱元林,崔海涛,温卫东,等. 含纤维束截面形状变化的三维编织复合材料细观模型及刚度预报[J]. 复合材料学报, 2012, 29(6):187-196. ZHU Y L, CUI H T, WEN W D, et al. Microstructure model and stiffness prediction of 3D braided composites considering yarns' cross-section variation[J]. Acta Materiae Compositae Sinica, 2012, 29(6):187-196.
[74] 王荣桥,刘茜,胡殿印,等. 一种改进的三维四向编织复合材料单胞模型及宏观弹性常数预测方法[J]. 复合材料学报, 2017, 34(9):1973-1981. WANG R Q, LIU X, HU D Y, et al. Improved unit cell model and elastic constant prediction method of 3D four-directional braided composites[J] Acta Materiae Compositae Sinica, 2017, 34(9):1973-1981.
[75] WANG Y Q, SUN X K. Digital-element simulation of textile processes[J]. Composites Science and Technology, 2001, 61(2):311-319.
[76] ZHOU G M, SUN X K, WANG Y Q. Multi-chain digital element analysis in textile mechanics[J]. Composites Science and Technology, 2004, 64(2):239-244.
[77] MIAO Y Y, ZHOU E, WANG Y Q, et al. Mechanics of textile composites:micro-geometry[J]. Composites Science and Technology, 2008, 68(7):1671-1678.
[78] GREEN S D, LONG A C, ELSAID B, et al. Numerical modelling of 3D woven preform deformations[J]. Composite Structures, 2014, 108(1):747-756.
[79] ISART N, EI SAID B, IVANOV D S, et al. Internal geometric modelling of 3D woven composites:a comparison between different approaches[J]. Composite Structures, 2015, 132:1219-1230.
[80] WANG Y Q, MIAO Y Y, SWENSON D, et al. Digital element approach for simulating impact and penetration of textiles[J]. International Journal of Impact Engineering, 2010, 37(5):552-560.
[81] WANG Y Q, MIAO Y Y, HUANG L J, et al. Effect of the inter-fiber friction on fiber damage propagation and ballistic limit of 2-D woven fabrics under a fully confined boundary condition[J]. International Journal of Impact Engineering, 2016, 97:66-78.
[82] DAELEMANS L, FAES J, ALLAOUI S, et al. Finite element simulation of the woven geometry and mechanical behaviour of a 3D woven dry fabric under tensile and shear loading using the digital element method[J]. Composites Science and Technology, 2016, 137:177-187.
[83] JOGLEKAR S, PANKOW M. Modeling of 3D woven composites using the digital element approach for accurate prediction of kinking under compressive loads[J]. Composite Structures, 2016, 160:547-559.
[84] SAGAR T V, POTLURI P, HEARLE J W S. Mesoscale modelling of interlaced fibre assemblies using energy method[J]. Computational Materials Science, 2003, 28(1):49-62.
[85] SHERBURN M, LONG A, JONES A, et al. Prediction of textile geometry using an energy minimization approach[J]. Journal of Industrial Textiles, 2012, 41(4):345-369.
[86] VERPOEST I, LOMOV S V. Virtual textile composites software WiseTex:integration with micro-mechanical, permeability and structural analysis[J]. Composites Science and Technology, 2005, 65(15/16):2563-2574.
[87] WANG Y Q, WANG A S D. Spatial distribution of yarns and mechanical properties in 3D braided tubular composites[J]. Applied Composite Materials, 1997, 4(2):121-132.
[88] 陈利,李嘉禄,李学明. 三维四步法圆型编织结构分析[J]. 复合材料学报, 2003, 20(2):76-80. CHEN L, LI J L, LI X M. Analysis of 4-step 3D tubular braiding structures[J]. Acta Materiae Compositae Sinica, 2003, 20(2):76-80.
[89] SUN X. Micro-geometry of 3-D braided tubular preform[J]. Journal of Composite Materials, 2004, 38(9):791-798.
[90] 马文锁,冯伟. 三维管状编织复合材料及其构件可变微单元几何分析模型[J]. 复合材料学报, 2005, 22(5):162-171. MA W S, FENG W. Variable microstructural unit-cell geometrical analysis model of 3D braided tubular composites and components[J]. Acta Materiae Compositae Sinica, 2005, 22(5):162-171.
[91] MA W, ZHU J, JIANG Y. Studies of fiber volume fraction and geometry of variable cross-section tubular 3D five-direction braided fabric[J]. Journal of Composite Materials, 2012, 46(14):1697-1704.
[92] WANG Y B, LIU Z G, LIU N, et al. A new geometric modelling approach for 3D braided tubular composites base on free form deformation[J]. Composite Structures, 2016, 136:75-85.
[1] 王桂芳, 刘忠侠, 张国鹏. 球磨时间对热压烧结制备TiC-CoCrFeNi复合材料微观组织及力学性能的影响[J]. 材料工程, 2019, 47(6): 94-100.
[2] 尚楷, 武志红, 张路平, 王倩, 郑海康. 模板法制备MoSi2/竹炭复合材料及吸波性能[J]. 材料工程, 2019, 47(5): 122-128.
[3] 何宗倍, 张瑞谦, 付道贵, 李鸣, 陈招科, 邱邵宇. 不同界面SiC纤维束复合材料的拉伸力学行为[J]. 材料工程, 2019, 47(4): 25-31.
[4] 李亚锋, 礼嵩明, 黑艳伟, 邢丽英, 陈祥宝. 太阳辐照对芳纶纤维及其复合材料性能的影响[J]. 材料工程, 2019, 47(4): 39-46.
[5] 李曦. 二维和零维纳米材料协同增强的高性能纳米复合材料[J]. 材料工程, 2019, 47(4): 47-55.
[6] 李芹, 盛利成, 董丽敏, 张彦飞, 金立国. ZnCo2O4及ZnCo2O4/rGO复合材料的制备与电化学性能[J]. 材料工程, 2019, 47(4): 71-76.
[7] 张航, 路媛媛, 王涛, 鲁亚冉, 刘德健. 激光熔覆WC/H13-Inconel625复合材料的冲击韧性与磨损性能[J]. 材料工程, 2019, 47(4): 127-134.
[8] 李惠, 肖文龙, 张艺镡, 马朝利. 多重结构Ti-B4C/Al2024复合材料的组织和力学性能[J]. 材料工程, 2019, 47(4): 152-159.
[9] 史思涛, 陈畅, 郭政, 李国新, 伍勇华, 苏明周, 王会萌. 原料配比对多孔MgO/Fe-Cr-Ni复合材料性能的影响[J]. 材料工程, 2019, 47(4): 167-173.
[10] 赵双赞, 燕绍九, 陈翔, 洪起虎, 李秀辉, 戴圣龙. 石墨烯纳米片增强铝基复合材料的动态力学行为[J]. 材料工程, 2019, 47(3): 23-29.
[11] 杨宇凯, 张宝, 王旭东, 张虎生, 武岳, 关永军. 石墨烯及碳化硅增强铝基复合材料的冲击力学行为[J]. 材料工程, 2019, 47(3): 15-22.
[12] 贺毅强, 徐虎林, 钱晨晨, 冯立超, 乔斌, 尚峰, 李化强. 机械合金化后注射成形制备Cu/Al2O3复合材料的显微组织与力学性能[J]. 材料工程, 2019, 47(3): 154-161.
[13] 刘巧沐, 黄顺洲, 何爱杰. 碳化硅陶瓷基复合材料在航空发动机上的应用需求及挑战[J]. 材料工程, 2019, 47(2): 1-10.
[14] 张博, 付琪智, 林森, 陈廷芳, 孙仕勇, 蒋卉. 炭化纳米Co3O4/硅藻土复合材料制备及其性能[J]. 材料工程, 2019, 47(2): 62-67.
[15] 刘英, 张永安, 王卫, 李冬生, 王俊伟, 梁玉冬. Fe对(Cu-Ni-Fe)-xNiFe2O4复合惰性阳极低温铝电解成膜机制的影响[J]. 材料工程, 2019, 47(2): 107-114.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn