Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (4): 1-14    DOI: 10.11868/j.issn.1001-4381.2019.000390
  纳米材料专栏 本期目录 | 过刊浏览 | 高级检索 |
新型二维纳米材料MXene的制备及在储能领域的应用进展
党阿磊1,2, 方成林1, 赵曌1, 赵廷凯1,2, 李铁虎1,2, 李昊1,2
1. 西北工业大学 材料学院, 西安 710072;
2. 西北工业大学 陕西省石墨烯新型炭材料及应用工程实验室, 西安 710072
Preparation of a new two-dimensional nanomaterial MXene and its application progress in energy storage
DANG A-lei1,2, FANG Cheng-lin1, ZHAO Zhao1, ZHAO Ting-kai1,2, LI Tie-hu1,2, LI Hao1,2
1. School of Materials Science & Engineering, Northwestern Polytechnical University, Xi'an 710072, China;
2. Shaanxi Engineering Laboratory for Graphene New Carbon Materials and Applications, Northwestern Polytechnical University, Xi'an 710072, China
全文: PDF(8981 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 二维过渡金属碳(氮)化物(MXene)作为一类新型二维纳米材料,自2011年发现以来,由于其优异的物理化学性能得到了广泛研究。MXene除具有传统二维材料的优异性能外,其高的导电性、良好的润滑性及电磁性等特殊性能,已被广泛地应用于能量存储、催化、润滑、电磁屏蔽、传感器、水净化等领域,并取得了一定的效果和进展。本文综述了近年来国内外关于MXene材料的最新研究现状,归纳总结了MXene的结构、性能和制备方法,以及在锂离子电池、超级电容器等领域的相关成果,指出了目前研究存在的短板,并展望了未来的研究方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
党阿磊
方成林
赵曌
赵廷凯
李铁虎
李昊
关键词 二维纳米材料MXene能源存储    
Abstract:As a new type of two-dimensional nanomaterials, MXene has been widely investigated since its discovery at 2011 due to its excellent physical and chemical properties, such as high conductivity, good lubricity, electromagnetism and other special properties. Hence, in addition to the performance of the traditional two-dimensional materials, MXene has been extensively used in the fields of energy storage, catalysis, lubrication, electromagnetic shielding, sensor, water purification and so on,and certain results and progress were achieved. The latest researches of MXene at structure, property and preparation methods, as well as the related achievements in lithium ion battery, supercapacitor and others at our country and overseas in recent years were reviewed in this paper. Moreover, the shortcomings of current research were summarized, and the future research direction were prospected as well.
Key wordstwo-dimensional nanomaterials    MXene    energy storage
收稿日期: 2019-03-21      出版日期: 2020-04-23
中图分类号:  TB34  
通讯作者: 党阿磊(1985-),男,副研究员,博士,研究方向为二维纳米材料的制备、性能和应用研究,联系地址:陕西省西安市碑林区友谊西路127号西北工业大学材料学院(710072),E-mail:dangalei@nwpu.edu.cn     E-mail: dangalei@nwpu.edu.cn
引用本文:   
党阿磊, 方成林, 赵曌, 赵廷凯, 李铁虎, 李昊. 新型二维纳米材料MXene的制备及在储能领域的应用进展[J]. 材料工程, 2020, 48(4): 1-14.
DANG A-lei, FANG Cheng-lin, ZHAO Zhao, ZHAO Ting-kai, LI Tie-hu, LI Hao. Preparation of a new two-dimensional nanomaterial MXene and its application progress in energy storage. Journal of Materials Engineering, 2020, 48(4): 1-14.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000390      或      http://jme.biam.ac.cn/CN/Y2020/V48/I4/1
[1] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. A. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696):666-669.
[2] NOVOSELOV K S, MISHCHENKO A, CARVALHO A,et al. 2D materials and van der Waals heterostructures[J]. Science, 2016, 353(6298):1-11.
[3] NAGUIB M, MOCHALIN V N, BARSOUM M W,et al. MXenes:a new family of two-dimensional materials[J]. Advanced Materials, 2014, 26(7):992-1005.
[4] NAGUIB M, KURTOGLU M, PRESSER V,et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials, 2011, 23(37):4248-4253.
[5] SHAHZAD F, ALHABEB M, HATTER C B,et al. Electromagnetic interference shielding with 2D transition metal carbide (MXene)[J]. Science, 2016, 353(6304):1137-1140.
[6] HAN M, YIN X, LI X,et al. Laminated and two-dimensional carbon-supported microwave absorbers derived from MXenes[J]. ACS Applied Materials & Interfaces, 2017, 9(23):20038-20045.
[7] ANASORI B, LUKATSKAYA M R, GOGOTSI Y. 2D metal carbides and nitrides (MXenes) for energy storage[J]. Nature Reviews Materials, 2017, 2:16098.
[8] URBANKOWSKI P, ANASORI B, MAKARYAN T,et al. Synthesis of two-dimensional titanium nitride Ti4N3(MXene)[J]. Nanoscale, 2016, 8(22):11385-11391.
[9] URBANKOWSKI P, ANASORI B, HANTANASIRISAKUL K,et al. 2D molybdenum and vanadium nitrides synthesized by ammoniation of 2D transition metal carbides (MXenes)[J]. Nanoscale, 2017, 9(45):17722-17730.
[10] YANG S, ZHANG P, WANG F,et al. Fluoride-free synthesis of two-dimensional titanium carbide (MXene) using a binary aqueous system[J]. Angewandte Chemie, 2018, 130(47):15717-15721.
[11] TANG Q, ZHOU ZHEN Z, SHEN P. Are MXenes promising anode materials for li ion batteries? computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2(X=F, OH) monolayer[J]. Journal of the American Chemical Society, 2012, 134(40):16909-16916.
[12] WANG X, SHEN X, GAO Y,et al. Atomic-scale recognition of surface structure and intercalation mechanism of Ti3C2X[J]. Journal of the American Chemical Society, 2015, 137(7):2715-2721.
[13] WANG H W, NAGUIB M, PAGE K,et al. Resolving the structure of Ti3C2Tx MXenes through multilevel structural modeling of the atomic pair distribution function[J]. Chemistry of Materials, 2016, 28(1):349-359.
[14] HOPE M A, FORSE A C, GRIFFITH K J,et al. NMR reveals the surface functionalisation of Ti3C2 MXene[J]. Physical Chemistry Chemical Physics, 2016, 18(7):5099-5102.
[15] ALHABEB M, MALESKI K, ANASORI B,et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene)[J]. Chemical Materials, 2017, 29(18):7633-7644.
[16] MESHKIANA R, NÄSLUND L Å, HALIMA J,et al. Synthesis of two-dimensional molybdenum carbide, Mo2C, from the gallium based atomic laminate Mo2Ga2C[J]. Scripta Materialia, 2015, 108:147-150.
[17] SHEIN I R, IVANOVSKII A L. Graphene-like titanium carbides and nitrides Tin+1Cn, Tin+1Nn(n=1, 2, and 3) from de-intercalated MAX phases:first-principles probing of their structural, electronic properties and relative stability[J]. Computational Materials Science, 2012, 65:104-114.
[18] NAGUIB M, MASHTALIR O, CARLE J,et al. Two-dimensional transition metal carbides[J]. ACS Nano, 2012, 6(2):1322-1331.
[19] LI L, WANG F, ZHU J,et al. The facile synthesis of layered Ti2C MXene/carbon nanotube composite paper with enhanced electrochemical properties[J]. Dalton Trans, 2017, 46(43):14880-14887.
[20] WANG K, ZHOU Y, XU W,et al. Fabrication and thermal stability of two-dimensional carbide Ti3C2 nanosheets[J]. Ceramics International, 2016, 42(7):8419-8424.
[21] WANG H, WU Y, ZHANG J,et al. Enhancement of the electrical properties of MXene Ti3C2 nanosheets by post-treatments of alkalization and calcination[J]. Materials Letters, 2015, 160:537-540.
[22] LI Z, WANG L, SUN D,et al. Synthesis and thermal stability of two-dimensional carbide MXene Ti3C2[J]. Materials Science and Engineering:B, 2015, 192:33-40.
[23] LI J, DUN Y, HUO C,et al. Thermal stability of two-dimensional Ti2C nanosheets[J]. Ceramics International, 2015, 41(2):2631-2635.
[24] XIE Y, NAGUIB M, MOCHALIN V N,et al. Role of surface structure on li-ion energy storage capacity of two-dimensional transition-metal carbides[J]. Journal of the American Chemical Society, 2014, 136(17):6385-6394.
[25] MASHTALIR O, NAGUIB M, DYATKIN B,et al. Kinetics of aluminum extraction from Ti3AlC2 in hydrofluoric acid[J]. Materials Chemistry and Physics, 2013, 139(1):147-152.
[26] NAGUIB M, MASHTALIR O, LUKATSKAYA M R,et al. One-step synthesis of nanocrystalline transition metal oxides on thin sheets of disordered graphitic carbon by oxidation of MXenes[J].Chemical Communications,2014,50(56):7420-7423.
[27] RAKHI R B, AHMED B, HEDHILI M N,et al. Effect of post etch annealing gas composition on the structural and electrochemical properties of Ti2CTx MXene electrodes for supercapacitor applications[J]. Chemistry of Materials, 2015, 27(15):5314-5323.
[28] ENYASHIN A N, IVANOVSKII A L. Atomic structure, comparative stability and electronic properties of hydroxylated Ti2C and Ti3C2 nanotubes[J]. Computational and Theoretical Chemistry, 2012, 989:27-32.
[29] KHAZAEI M, ARAI M, SASAKI T,et al. Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides[J]. Advanced Functional Materials, 2013, 23(17):2185-2192.
[30] LANE N J, BARSOUM M W, RONDINELLI J M. Correlation effects and spin-orbit interactions in two-dimensional hexagonal 5d transition metal carbides, Tan+1Cn(n=1,2,3)[J]. Europhysics Letters, 2013, 101(5):57004.
[31] SI C, ZHOU J, SUN Z. Half-metallic ferromagnetism and surface functionalization-induced metal-insulator transition in graphene-like two-dimensional Cr2C crystals[J]. ACS Applied Materials & Interfaces, 2015, 7(31):17510-17515.
[32] MASHTALIR O, NAGUIB M, MOCHALIN V N, et al. Intercalation and delamination of layered carbides and carbonitrides[J]. Nature Communications, 2013, 4:1716.
[33] LUKATSKAYA M R, MASHTALIR O, REN C E,et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide[J]. Science, 2013, 341:1502-1505.
[34] XIE J, WANG X, LIA A,et al. Corrosion behavior of selected Mn+1AXn phases in hot concentrated HCl solution:effect of a element and MX layer[J].Corrosion Science,2012,60:129-135.
[35] HU M, HU T, LI Z,et al. Surface functional groups and interlayer water determine the electrochemical capacitance of Ti3C2Tx MXene[J]. ACS Nano, 2018, 12(4):3578-3586.
[36] CAO M S, CAI Y Z, HE P,et al. 2D MXenes:electromagnetic property for microwave absorption and electromagnetic interference shielding[J]. Chemical Engineering Journal, 2019, 359:1265-1302.
[37] ZHOU J, ZHA X, CHEN F Y et al. A two-dimensional zirconium carbide by selective etching of Al3C3 from nanolaminated Zr3Al3C5[J]. Angewandte Chemie Internal Edition, 2016, 55(16):5008-5013.
[38] GHIDIU M, LUKATSKAYA M R, ZHAO M Q,et al. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance[J]. Nature, 2014, 516:78-81.
[39] XIE X, ZHAO M Q, ANASORI B,et al. Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices[J]. Nano Energy, 2016, 26:513-523.
[40] XIA Y, MATHIS T S, ZHAO M Q,et al. Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes[J]. Nature, 2018, 557:409-412.
[41] SOUNDIRARAJU B, GEORGE B K. Two-dimensional titanium nitride (Ti2N) MXene:synthesis, characterization, and potential application as surface-enhanced Raman scattering substrate[J].ACS Nano, 2017, 11(9):8892-8900.
[42] JOSEPH H, MARIA R L, KEVIN M C, et al. Transparent conductive two-dimensional titanium carbide epitaxial thin films.[J]. Chem Mater, 2014, 26:2374-2381.
[43] XU C, WANG L, LIU Z,et al. Large-area high-quality 2D ultrathin Mo2C superconducting crystals[J]. Nature Materials, 2015, 14(11):1135-1141.
[44] LI T, YAO L, LIU Q,et al. Fluorine-free synthesis of high-purity Ti3C2Tx(T=OH, O) via alkali treatment[J]. Angewandte Chemie International Edition, 2018, 57:6115-6119.
[45] XIE X, XUE Y, LI L,et al. Surface Al leached Ti3AlC2 as a substitute for carbon for use as a catalyst support in a harsh corrosive electrochemical system[J]. Nanoscale, 2014, 6(19):11035-11040.
[46] YANG S, ZHANG P, WANG F,et al. Fluoride-free synthesis of two-dimensional titanium carbide (mxene) using a binary aqueous system[J]. Angewandte Chemie International Edition. 2018, 130:15717-15721.
[47] JIANG H, WANG Z, YANG Q,et al. A novel MnO2/Ti3C2Tx MXene nanocomposite as high performance electrode materials for flexible supercapacitors[J]. Electrochimica Acta, 2018, 290:695-703.
[48] COME J, NAGUIB M, ROZIER P,et al. A non-aqueous asymmetric cell with a Ti2C-based two-dimensional negative electrode[J]. Journal of the Electrochemical Society, 2012, 159(8):A1368-A1373.
[49] NAGUIB M, HALIM J, LU J,et al. New two-dimensional niobium and vanadium carbides as promising materials for li-ion batteries[J]. Journal of the American Chemical Society, 2013, 135(43):15966-15969.
[50] SUN D, WANG M, LI Z,et al. Two-dimensional Ti3C2 as anode material for Li-ion batteries[J]. Electrochemistry Communications, 2014, 47:80-83.
[51] NAGUIB M, COME J, DYATKIN B,et al. MXene:a promising transition metal carbide anode for lithium-ion batteries[J]. Electrochemistry Communications, 2012, 16(1):61-64.
[52] ER D, LI J, NAGUIB M,et al. Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries[J]. ACS Applied Materials Interfaces, 2014, 6(14):11173-11179.
[53] NAGUIB M, MASHTALIR O, CARLE J,et al. Two-dimensional transition metal carbides[J]. ACS Nano, 2012, 6(2):1322-1331.
[54] MENG R, HUANG J, FENG Y,et al. Black phosphorus quantum dot/Ti3C2 MXene nanosheet composites for efficient electrochemical lithium/sodium-ion storage[J]. Advanced Energy Materials, 2018, 8(26):1801514.
[55] LIU X, LONG Y Z, LIAO L, et al. Large-scale integration of semiconductor nanowires for high-performance flexible electronics[J]. ACS Nano,2012, 6(3):1888-1900.
[56] XIAO Z, YANG Z, LI Z, et al. Synchronous gains of areal and volumetric capacities in lithium-sulfur batteries promised by flower-like porous Ti3C2Tx matrix[J]. ACS Nano, 2019, 13:3404-3412.
[57] OH S M, PATIL S B, JIN X,et al. Recent applications of 2D inorganic nanosheets for emerging energy storage system[J]. Chemistry-A European Journal, 2017, 24(19):4757-4773.
[58] HU M, LI Z, HU T,et al. High-capacitance mechanism for Ti3C2Tx MXene by in situ electrochemical Raman spectroscopy investigation[J]. ACS Nano, 2016, 10(12):11344-11350.
[59] LIU J, LIU R, ZHANG A,et al. Fabrication of cobaltosic oxide nanoparticles doped 3D MXene/graphene hybrid porous aerogels for all-solid-state supercapacitors[J]. Chemistry-A European Journal, 2019, 25:5547-5554.
[60] LUKATSKAYA M R, KOTA S, LIN Z,et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides[J]. Nature Energy, 2017, 2:17105.
[61] HU M, HU T, LI Z,et al. Surface functional groups and interlayer water determine the electrochemical capacitance of Ti3C2Tx MXene[J]. ACS Nano, 2018, 12(4):3578-3586.
[62] LI J, YUAN X, LIN C,et al. Achieving high pseudocapacitance of 2D titanium carbide (MXene) by cation intercalation and surface modification[J]. Advanced Energy Materials, 2017, 7(15):1602725.
[63] BOOTA M, ANASORI B, VOIGT C,et al. Pseudocapacitive electrodes produced by oxidant-free polymerization of pyrrole between the layers of 2D titanium carbide (MXene)[J]. Advanced Materials, 2016, 28(7):1517-1522.
[64] HU M, LI Z, ZHANG H,et al. Self-assembled Ti3C2Tx MXene film with high gravimetric capacitance[J]. Chemical Communications, 2015, 51(70):13531-13533.
[65] ZHAO M Q, REN C E, LING Z,et al. Flexible MXene/carbon nanotube composite paper with high volumetric capacitance[J]. Advanced Materials, 2015, 27(2):339-345.
[66] ZHAO C, WANG Q, ZHANG H,et al. Two-dimensional titanium carbide/rGO composite for high performance supercapacitors[J]. ACS Applied Materials Interfaces, 2016, 8(24):15661-15667.
[1] 齐新, 陈翔, 彭思侃, 王继贤, 王楠, 燕绍九. MXenes二维纳米材料及其在锂离子电池中的应用研究进展[J]. 材料工程, 2019, 47(12): 10-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn