金银镍复合管的研究

北京航空材料研究所 马德良 叶志真 赵伟彪

本文介绍了一种生产双金属管的新方法,即将贵金属管与一般金属管进行组合、冷拉后在高温下经过较长时间 扩散的方法。这种复合工艺可以在常规的管材生产线上进行。新工艺可以节省贵金属 60%以上。采用化学处理的 方法基本上解决了返回料的回收问题。

Study of Gold-Silver-Nickel Tube Ma Deliang Ye Zhizhen Zhao Weibiao (Institute of Aeronautical Materials, Beijing)

This paper introduces a new method to produce a duplex matal tube, which is a precious metal tube composed with a common metal tube after cold drawing and diffused at high temperature for a certain period of time. The composite processing can be carried out on the conventional tube production line. The new method can save more than 60% noble metal, and it has solved the problem of the retrieval rejects by chemical treatment basically.

DW6 电位器导电环原用 AuAgNi22-3 管材制成。根据发展需要量较大,在满足产品技术要求的情况下,采用冷拉组合后加热扩散的方法制作 AuAgNi22-3 / H96 复合管代替全贵金属管,节省了大量贵金属。经 2×10⁶ 次循环试验证明,满足了产品的使用要求,现已生产。根据用户需要,规定的技术要求如下:

- (1) 规格 φ5.7±0.02mm×φ4.5+0.2mm;
- (2) 复层厚度 0.16~0.20mm;
- (3) 复层硬度 Hp>120;
- (4) 复层表面粗糙度 为 7 级 (平均高度值 > 3.2~6.3μm);
 - (5) 复层和基层不剥离。

一、试验过程和结果

1.基层材料的选择

在考虑复合管两层材料能很好结合的同时,还应考虑 其分离和回收问题,以保证总的生产成本降低,才能使复 合管得到应用。

铜及其合金是一种常用作复合材料的基体材料。现采用 H62 和 H96 黄铜作复合管的基层材料进行试验。用 JXA-3A 型电子探针测定基层材料中 Cu 和 Zn 向复层的扩散深度,结果见表 1。

由表 1 可见, 在扩散温度较高的情况下,采用 H96 合金时 Zn 的扩散深度仅为 H62 合金的 1/3 左右, Cu 的扩散深度也小得多。同时,在满足工作需要的情况下,控制基层元素的扩散深度对减少复层材料的污染有利。由于H96 合金中低熔点 Zn 较少,因此,允许采用较高的扩散

温度以提高界面的结合力,同时基体塑性较好,有利于提 高劳动生产率。

2.层比及表面硬度试验

在复合管组合及复合的加工中,由于两层金属的塑性不同,随着变形量的不同层比可能是变化的。因此,必须通过试验确定组合前两层金属管的毛坯尺寸,以满足成品尺寸的要求。

在复层的厚度一定时,改变基层的厚度和采用不同的变形量进行试验。复合管加工是采用长芯杆进行的,但这与无芯杆加工时的应力状态是不同的,因此,又结合有无芯杆进行试验。

在衬有芯杆情况下的试验结果见表 2 (复层为软态, 基层为硬态)。

由表 2 可见,变形后层比的变化是不大的,即两层厚度的变化基本上是按比例进行的。

在试验状态相同的情况下,并根据成品的尺寸要求, 无芯杆时的试验结果见表 3。

由表 3 可见,变形前后的层比是变化的,复层的层比增加了。这与有芯杆的情况不同,在制作复层符合要求的复合管时应注意。复层的原始层可设计为总厚度的 22~27%。

表 1 基层材料中的元素向复层材料中的扩散深度

元素扩散深度	扩散条件	750℃ / 90min	700℃ / 90min
H62	Cu	-	60
1102	Zn		124
H96	Cu	39	
л96	Zn	42	

表 2 有芯杆时层比及表面硬度

		变,	杉 前			变,	 后			
试样号	复	层	基	基层		层	基	层	变形量 %	表面硬度 H _D
	厚度(mm)	层比(%)	厚度(mm)	层比(%)	厚度(mm)	层比(%)	厚度(mm)	层比(%)	, ,	120
1	0.20	19.8	0.81	90.3	0.15	21.4	0.55	78.6	42.5	139
'	0.20	19.6	V.61	80.2	0.13	22.4	0.45	77.6	61.3	155
2	0.20	21.3	0.74	78.7	0.16	21.9	0.57	78.1	31.7	137
	0.20	21.5	0.74	76.7	0.14	21.2	0.52	78.8	47.5	139
3	0.20	22.0	0.71	70.0	0.17	23.0	0.57	77.0	26.8	142
) ,	0.20	22.0	0.71	78.0	0.15	22.4	0.52	77.6	43.6	146
	0.20	24.4	0.62	75.6	0.18	25.0	0.54	75.0	22,0	134
4	0.20	24.4	0.62	75.6	0.16	22.9	0.54	77.1	35.2	142

表 3 无芯杆时层比及表面硬度

		变别	彡 前		变 形 后				表面硬度
层别	外径 mm	内径 mm	层厚 mm	层比	外径 mm	内径 mm	层厚 mm	层比 %	H _D
复层	8.1	7.5	0.3	25.0	5.68	5.32	0.18	33.3	126
基层	7.3	5.5	0.9	75.0	5.32	4.60	0.36	66.7	

3.组合变形对界面结合的影响

组合前首先应对复合管的界面进行彻底清理,这是非常重要的。扩散处理前的组合变形会影响界面的接触,从而影响扩散结合。试验结果表明,当进行有芯杆拉伸变形时,组合变形量为 16~20%、经 750℃温度下处理 90 分钟后界面能达到结合;当进行无芯杆拉伸变形时,变形量仅为 10%,界面即能较好地结合。因为,此时在空拉伸时可避免脱管时造成的层间松动,因此,较小的组合变形就能使界面紧密接触,从而使界面达到结合。

4.热扩散工艺对界面结合的影响

为进行此项工作,采用了拉伸、压平及弯曲等多种检验 界面结合状态的方法。

(1) 拉伸试验 图 1 为拉伸试样示意图。试样的制备方法如下:

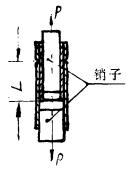


图 1 拉伸试样示意图

采用 25~30%的 HNO, 水溶液去除复合管的基层 H96 合金, 其长度为 15~20mm, 然后从管的另一头向里 切缺口, 使其刚露出基层, 使试验的界面结合长度 L为

5mm 左右, 试样的总长度不小于 40mm。

拉伸试验在 TOM 电子拉力机上进行,试验的结果见表 4。

由表 4 可见,在温度为 500℃和 700℃时,扩散时间 虽长达 90 分钟,但结合强度很低。试验证明,基层为 H62 合金时,在此扩散条件下达到了结合,这与合金中 Zn 的含量有关。

在 H96 合金为基层材料时,为了使界面达到良好的结合,必须进行提高温度试验。

复层的原始状态为软态,基层为硬态,在有芯杆的情况下组合,变形量为 17.4%。第一次扩散温度为 750℃,保温时间为 90 分钟;为考虑冷变形对界面的影响,在扩散后进行了变形,并进行了第二次扩散。由于受设备及工具的限制,能制备出截面较大的试样,拉伸时破断部位均在复层,界面均未被拉开,因此,界面强度大于所测强度。试验的结果见表 5。

由表 5 可见,各状态下的界面强度均在 100MPa 以上,这说明第一次扩散的温度提高为 750℃是十分重要的。同时说明,在此基础上变形不会破坏界面的结合,而后的第二次扩散则起着增加界面强度的作用。

(2) 压平试验 沿复合管的轴向剖开,呈半圆弧(瓦状),长度为 5~10mm 的试样,见图 2。在平台上缓慢将试样压平后,检查分层情况。表 4 中的试样在压平时,无一分层,说明界面结合是牢固的。

另一组试样在组合后在 750℃温度下处理 90 分钟,压 平和拉伸试验的对比结果见表 6。

表 4 热扩散温度对界面结合的影响

试	热扩散	热扩散工艺		界面 内径		界面	界面和	拉伸试验		
样号	温度 (C)	时间 (min)	(mm)	直径 (mm)	(mm)	长度 (mm)		破断 部位	破断 力 (N)	界面 强度 (MPa)
1	700	90	6.9	5.93	4.9	8.6	160	界面	1078	6.73
2	500	90	6.9	5.93	4.9	8.0	149	界面	657	4.41

表 5 各状态下的拉伸结果

		试	样状	态		2	夏层	!	unde süre	TO SECURE
试样	第一次			第二次	第二次扩散		界面	截面	破断 力	破断 强度
号	温度	时间 min	变形量 %	温度 ℃	时间 min	mm	直径 mm	积 mm²	N	MPa
1	750	90	_	_	_	7.6	6.08	16.33	2597	160
2	750	90	50	_		6	5.1	7.85	1254	160
3	750	90	50	750	90	6	5.1	7.85	960	122
4	750	90	50	700	90	6	5.1	7.85	931	119
5	750	90	50	650	90	6	5.1	7.85	931	119
6	750	90	50	600	90	6	5.1	7.85	980	125
7	750	90	. 50	550	90	6	5.1	7.85	1098	140
8	750	90	50	500	90	6	5.1	7.85	902	115

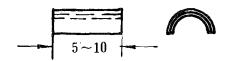


图 2 压平试样示意图

表 6 拉伸及压平试验对比

	试	外径	界面	界面		拉	拉伸试验			
	样号		直径	长度	破断 部位	破断面积	破断力	破断 强度	界面 强度	压平 试验
ı		mm	mm	mm	파인고.	mm ²	N	MPa	MPa	
	1	7.19	6.73	8	复层	5.03	1715	341	> 341	未分层
ĺ	2	6.42	5.92	2.8	复层	4.85	1225	253	> 253	未分层

由表 6 可见,压平和拉伸试验的结果是一致的,即界面的结合是牢固的。

(3) 弯曲试验 弯曲试验的试样长度为 15mm,宽度为 $2\sim3mm$,弯曲半径为 $1\sim2mm$ 。试样的状态同表5,试验的结果见表 7。

由表 7 可见,弯曲试验和压平试验一样,可以作为检查界面结合情况的方法,而且,它比拉伸试验简便。

5.热扩散后变形对界面结合的影响。

试验证明,只要第一次采用了 750℃、90 分钟热扩散 处理, 当复合管的冷变形量达 70%时, 在压平后未发现界 面分层, 结合是牢固的。

表 7 各状态下的弯曲试验结果

试		试 杉	半 状 :	·		断裂时	
样号	第一	次扩散	扩散后 第二次扩散 变形量		弯曲	破坏 情况	
号	温度	时间 min	发形里%	温度	时间 min	次数	11750
2	750	90	50	L		. 6	未分层
8	750	90	50	500	90	7	未分层
7	750	90	50	550	90	7	未分层
6	750	90	50	600	90	8	未分层
5	750	90	50	650	90	8.5	未分层
4	750	90	50	700	90	12	未分层
3	750	90	50	750	90	14	未分层

6.基层状态对层比及性能的影响

选用软态复层和软、硬两种状态的基层进行空拉组合,后经750℃温度下处理90分钟。试样1和2同表6中的1和2。试验结果见表8。

由表 8 可见: a.在复层为软态的情况下,基层选用硬态比软态易得到良好的结合界面。因为在变形时,基层起着支撑的作用,使复层与基层接触较紧密,利于界面金属的扩散; b.试样 1 在组合变形量极小的情况下,界面的结合仍是良好的,这就再次证明,界面达到复合的关键之一是界面的紧密接触。

7.各种状态下界面过渡层的厚度

用金相显微镜测定界面过渡层的厚度,各状态下的过渡层厚度见表 9。

由表 9 可见,过渡层的厚度随扩散温度的提高而增加。扩散温度从 500℃增加了 16%; 从 650℃增加到 750℃,同样增加 100℃,达到 600℃,过渡层的厚度增加了 100℃,但是,过渡层的厚度却增加了 55%。这说明温度越高,元素的扩散速度在试验的温度情况下越大。

放大 200 倍的过渡层金相组织见图 3~8。由图可见, 经热扩散后复合管界面的结合是牢固的。

表 8 各层状态组合时的层比及性能

试	各层	状态	组合变	复	层	基	层	界面		
样号	复层	基层	形量	厚度 mm	层比	厚度 mm	层比%	强度 MPa	压平 试验	
1	М	Y	2~5	0.23	21.3	0.85	78.7	>341	未分层	
2	M	Y	15	0.25	22.1	0.88	77.9	> 253	未分层	
3	M	М	2~5	0.25	22.7	0.85	77.3	9.02	分层	
4	М	М	15	0.27	23.7	0.87	76.3	1.86	分层	

表 9 各状态下的过渡层厚度

		试	样 状	态		过渡层	过渡层
试	第一次	大扩散	扩散后	第二次	大扩散	厚度	占复层
样 号	温度	时间 min	变形量	温度	时间 min	μm	的比例
2	750	90	50	_	_	19	4.2
8	750	90	50	500	90	19	4.2
6	750	90	50	600	90	22	4.9
5	750	90	50	650	90	22	4.9
4	750	90	50	700	90	25	5.6
3	750	90	50	750	90	34	7.6

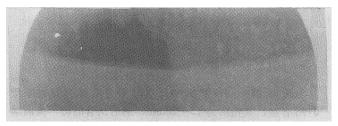


图 3 750℃ / 90′+50%

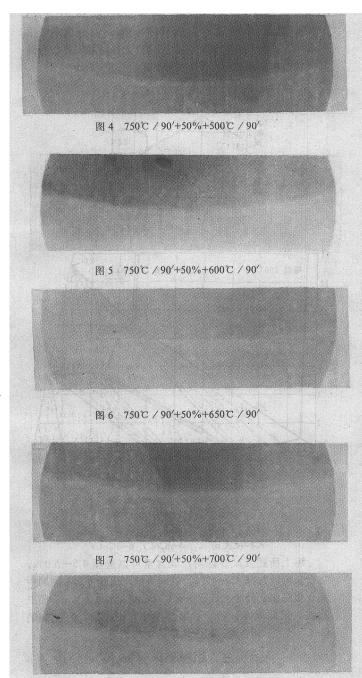


图 8 750℃ / 90′+50%+750℃ / 90′

8.层间元素互扩散的深度

用电子探针测定了各状态下层间元素互扩散的深度,结 果见表 10。

由表 10 可见,总的来说,层间元素互扩散深度随温度的提高而增加。

9.复合管的分离和回收

复合管的分离和回收是复合管制作工艺中必须解决的 重要问题。

现采用化学处理的方法进行试验证实:

a.用 $20\sim50\%$ 的 NHO $_3$ 水溶液在煮沸的情况下去除基层 H96 合金;

b.在煮沸的情况下,用 10~20% FeCl₃ 水溶液进行除 膜处理;

c.用洁净的水煮沸和冲洗。

用上述方法对 85691 炉复合管料头进行试验。将回收的 50 多克 AuAgNi22-3 合金回炉熔炼,其化学成分分析结果见表 11。

由表 11 可见,在采用热扩散方法制作复合管时,由于层间元素互扩散,基层 H96 合金中的 Cu 和 Zn 会不可避免地渗入复层合金,并达到一定的数量。

为了使用回收的 AuAgNi22-3 合金,在新料中加入回炉料 20%和 30%两种含量进行了重熔试验,其化学成分见表 12。

由表 12 可见,加入 20%回炉料的合金中的杂质总量为 0.26%,符合杂质总量小于 0.30%的技术要求;当加入 30%回炉料后,杂质总量超过了 0.30%。

在实际回收使用时,应先分析回收料中的 Cu 和 Zn 的 含量,通过计算后确定加入新料中的数量。

10.产品试验

用户在经车外圆、镗内孔和磨外圆制作导电环的过程 中未发现分层。在产品试验时,耐磨性等均达到要求,满 足了使用需要。

二、讨论

1. 从界面结合的牢固性而言,应提高扩散的温度和增加时间,但是,这将会使复层中 Cu 和 Zn 的含量增加,会降低回收使用的效率。从这点出发,选用 H96 合金作基层材料比 H62 合金为好。

表 10 层间扩散元素的深度

						基层元素向 复层的扩		复层元素向基层 的扩散深度		
试样	第一次	大扩散	扩散后	第二次	第二次扩散		E(µm)		(μm)	
号	温度	时间 min	变形量 %	温度 で min		Cu	Zn	Au	Ag	Ni
2	750	90	50	_		39	45	39	15	18
8	750	90	50	500	90	46	62	46	13	14
6	750	90	50	600	90	42	52	37	15	18
5	750	90	50	650	90	45	63	54	38	15
3	750	90	50	750	90	60	95	80	28	40

表 11 分离回收的 AuAgNi22-3 合金的化学成分(%)

Ag	Ni	Cu	Zn
21.72	3.09	0.56	0.10

表 12 在新料中加入回收料后的化学成分

AC.	1.2	TT-4314	-T - I - Wi	·/ \	A117H1	12 10 3	12473	
成分(%)	Ag	Ni	Cu	Zn	Fe	Pb	Sb	Bi
20%回炉料+新料	21.9	3.0	0.155	< 0.05	< 0.05	< 0.002	< 0.002	< 0.002
30%回炉料 +新料	21.92	3.0	0.235	< 0.05	< 0.05	< 0.002	< 0.002	< 0.002

(下转第 30 页)

2.测定复合材料的孔隙含量

由于碳纤维复合材料制造工艺的关系,不可避免地含有孔隙。孔隙将会明显地降低复合材料的层间剪切强度。因此,控制复合材料孔隙含量是控制复合材料质量的重要指标。用无损方法准确测量孔隙含量是很困难的。复合材料中孔隙是体积型缺陷,利用软 X 射线照相可以比较灵敏地发现这种缺陷,对透照的底片进行图像处理和数据统计分析,即可得到孔隙含量。

图 4 是含有孔隙的碳纤维复合材料的 X 射线照片经过图像处理后的图形。原来在 X 射线照片上模糊不清的孔隙分布现在显得十分清楚。图 5 是原始图像直方图。对图 4 进行统计就可得到孔隙的面积率为 18.32%。如果考虑到复合材料的制造特点,认为孔隙只分布在一个碳纤维层内,则用面积率除以层数,即可求出孔隙的体积率,图 4 所示区域孔隙的体积率为 0.92%。

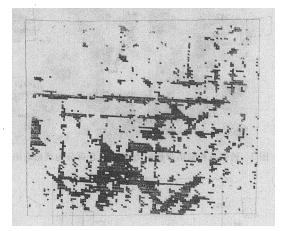
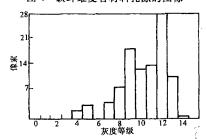



图 4 碳纤维复合材料孔隙的图像

灰度等级	像素	像素比例 (%)	
0	1	0.006	
1	0	0	
2	0	0	
3	0	0	
4	372	2.270	
5	572	3.491	
6	2	0.012	
7	728	4.443	
8	1328	8.105	
9	2909	17.755	
10	2082	12.707	
11	2250	13.732	
12	4321	26.373	
13	1759	10.736	
14	59	0.360	
15	1	0.006	

图 5 图 4 原始图像的像素直方图和相应的数据 利用图像处理中的数据统计方法还可对不同大小的孔

隙进行分类,对图 4 的分类结果示于表 2。

表 2 按面积大小对缺陷分类

大小 (像素)	所占比例 (%)
5~20	76.53
21~36	10.71
37~52	5.10
53~68	2.55
69~85	2.04
86~101 102~117	1.53
102 117	1.02

3.测定复合材料纤维体积含量

用金相照像可获得复合材料的纤维断面,采用图像处理可准确获得复合材料纤维体积含量,图 6 是经过采样直接得到的纤维断面图形,经过处理统计,纤维体积含量为63%,用在金相显微镜下数格子的方法测得为 62.5%,两者很一致。

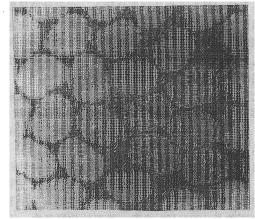


图 6 碳纤维复合材料纤维断面图

六、结 论

本文建立了负片图像处理装置,利用本装置可对模糊 不清的负片进行图像处理,增强图像清晰度,还可使缺陷 等有关图像获得放大。对缺陷等图像可进行定量统计和分 析,从而为无损检测技术提供有力的工具。

* * * * * * * * * * *

(上接第 13 页)

2.用户认为,在车、磨加工复合管时,本身就是一种分层试验,只要加工时不分层,在使用时是不会有问题的。因此,在满足工作需要的情况下,过渡的界面扩散是不必要的。看来,第二次扩散处理的温度和时间是可以降低和减少的。

3.通过复合管的各项工艺试验证明:

a.界面结合的基本条件是: 界面的洁净和紧密接触;

b.第一次较好的扩散工艺是: 加热温度为 750℃,保温时间为 90 分钟。这是制作复合管的关键之一,这将可减少某些不利因素,提高复合管制作工艺的稳定性。

4.在不增加任何设备和工具的情况下,可利用常规方 法和工艺制作复合管。同时,制作复合管可节省贵金属 50%以上。