爆炸喷涂 WC-Co 涂层结合强度的测量方法及喷涂工艺研究

Method of Adhesion Strength and Spray Techniques of Detonation Gun Sprayed WC-Co Coatings

> 唐建新, 米青田, 张爱斌, 陈建平 (北京航空材料研究院, 北京 100095)

TANG Jian-xin, MI Qing-tian, ZHANG Ai-bin, CHEN Jian-pin (Institute of Aeronautical Materials, Beijing 100095, China)

摘要: 设计了一种新的测量方法用于测量爆炸喷涂涂层与基体的结合强度。从理论上分析了这种方法拉伸面的临界尺寸。实验结果表明,对国产喷枪尺寸设计为 2mm 左右是合适的,爆炸喷涂涂层与基体的结合强度最高可达 $143\,M\,Pa$ 。为避免喷涂过程中金属 Co 的损失,获得较好的显微形貌,爆炸气体中 C_2H_2 需要过量, O_2/C_2H_2 (摩尔比) 为 1.5 左右较合适。

关键词: 爆炸喷涂; 结合强度; WC-Co

中图分类号: TG174.442 文献标识码: A 文章编号: 1001-4381 (2001) 04-0034-03

Abstract: A new method has been introduced to measure the adhesion strength of the d-gun sprayed W C-Co coatings. The pulling critical size has been analyzed. The experiments show that the pulling critical size is about 2mm for detonation-spraying gun made in China and the adhesion strength for W C-Co coating is as high as 143M Pa. It has indicated that the value of O₂/C₂H₂ mol ratio must be 1.5 in order to avoid the oxidation of Co during spraying and obtain good microstructure.

Key words: detonation spraying; adhesion strength; WC-Co

通过爆炸喷涂工艺获得的涂层具有高的结合强度,高的致密度,高的硬度,同时由于喷涂过程为脉冲式,工件的温度不超过 200 ,因此被广泛用于飞机发动机的零部件上。尽管国内开展爆炸喷涂的研究工作已经有二十多年的历史,但仍采用传统的胶粘拉伸的方法对涂层与基体的结合强度进行测量。由于爆炸喷涂 WC-Co 涂层与基体的结合强度远远大于胶粘剂的抗拉强度,因此一直没有获得涂层与基体结合强度的真实数据,甚至航空标准中仅规定了 WC-Co 的结合强度大于 65M $Pa^{[1]}$,该值仅代表了使用的 E-7 胶的抗拉强度。

本工作设计了一种新的涂层与基体结合强度的测量方法,并对爆炸喷涂 WC-Co 涂层的喷涂工艺进行了研究。

1 理论分析

图 1 给出了新的涂层与基体结合强度测量方法的示意图,在实际的测量过程为减少拉伸过程中的摩擦力,将拉伸销由柱形改为锥形。经过试验,确定了锥度为 15 °°

在没有粘结剂的条件下, 拉伸时拉伸销从支撑圈中拔除, 需要克服的力有涂层与基体的结合力和涂层 发生剪切断裂所需要的力, 下面从理论上进行分析:

设涂层与基体的结合强度为 σ ,拉伸销喷涂涂层一侧的半径为r,则要使涂层和基体脱离所需要的拉力F1为:

$$F_1 = \sigma_1 \times \pi r^2 \tag{1}$$

设涂层的剪切强度为 σ_2 ,在相同半径条件下,涂层发生剪切断裂所需要的力 F_2 可表示为:

$$F_2 = \sigma_2 \times 2\pi r \times h \tag{2}$$

其中 h 为涂层的厚度。

为获得涂层与基体的结合强度需要满足如下条 件:

$$F_2 > F_1 \tag{3}$$

如图 2 所示, 拉伸销喷涂端面的半径值应小于某一固定值 r^i 。由于拉伸销与支撑圈是机械配合, 造成涂层缺陷, 导致涂层很容易在拉伸销边缘开裂, 假设 σ 2 的值在100-200M P_a 的范围内, 涂层厚度h 为0.3mm,

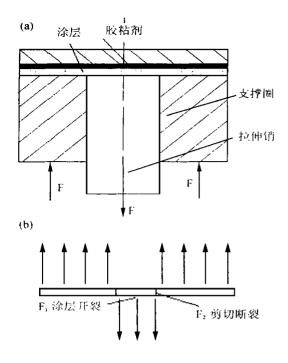


图 1 涂层结合强度测量方法示意图 (a) 拉伸方法: (b) 涂层受力分析

Fig. 1 Schematic diagram of measurement of adhesion strength

根据工厂的要求涂层的结合强度为 120 M Pa,此时计算出 r_1 的值为 0.5 m m,考虑到 120 M Pa 为涂层结合强度的下限,随着涂层与基体结合强度的提高, r_1 的数值会更小,其结果导致机加工的难度和数据的离散性加大,在实际过程中的可行性下降。

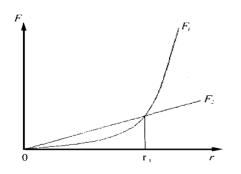


图 2 在没有粘结剂的条件下拉伸过程的受力分析 Fig. 2 Analysis of strength during pulling without adhesive

Fig. 2 Analysis of strength during pulling without adhesive

为达到较大的 \mathbf{r}_1 值, 需要增加 F_2 的值。解决的方法是将涂层通过粘结剂粘在另外的拉伸工件上。此时 F_2 可表示为 F_3 :

为获得涂层与基体的结合强度需要满足如下条 件:

$$F_3 > F_1 \tag{5}$$

图 3 给出了此条件下的受力示意图,由于粘结剂的作用,拉伸销喷涂涂层端面的半径临界值由 rī 增加到 rz。

选用的粘结剂为 E-7 胶, σ 为 70M Pa,经计算得到 r^2 的值为 1.2mm,可以满足机加工的要求。

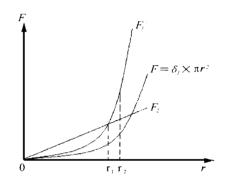


图 3 有粘结剂的条件下拉伸过程的受力分析 Fig. 3 Analysis of strength during pulling used adhesive

2 实验方法

按文献 [2] 的要求加工不同断面尺寸的拉伸试样,具体尺寸如表 1 所示。基体材料为 1Cr18Ni9Ti,用汽油和丙酮进行清洗,用 20-30 目的刚玉砂在 60 磅/英寸²的空气压力下吹砂。调整爆炸喷涂工艺参数至最佳,进行喷涂,喷涂材料为自贡产的 WC-12Co,颗粒度为 200-325 目,爆炸喷枪是国产设备。利用普通拉伸实验机进行拉伸。通过金相显微镜对涂层相貌进行观察。

3 实验结果与讨论

图 4 是不同 O_2/C_2H_2 比条件下得到涂层的金相 照片。爆炸喷涂是通过 O_2/C_2H_2 点火爆炸产生的爆轰 波对粉末进行加热、加速,使其喷涂到工件表面上^[3]。在 O_2/C_2H_2 比为 2. 5 时发生如下反应:

由于加热后的粉末在喷涂到工件表面上需要在空气中飞行一段时间,在 O_2/C_2H_2 比为 2.5 时,空气中的氧气会直接和 $WC-12C_0$ 中的粘结相金属 C_0 发生化学反应,减少了 C_0 含量,结果导致涂层的孔隙率增加。图 A_a 有较多的气孔正是如此。

在 O₂/ C₂H₂ 比为 1.5 时可能发生如下反应:

1. $5O_2 + C_2H_2 = 2CO + H_2O$

或存在没有反应完全的 C_2H_2 , 加热的粉末在空气中飞行时. CO 和 C_2H_2 将首先与 O_2 发生反应. 减少金属

Co 的损耗, 由于金属含量的增加, 最终导致涂层的的 孔隙率比高氧条件下低, 如图 4b 所示。

表1给出了在02/C2H2比为1.5时不同拉伸销

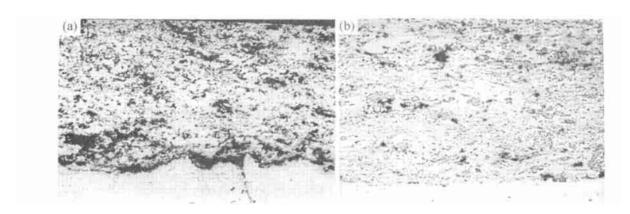


图 4 不同 O₂/C₂H₂ 条件下 W C-12C₀ 涂层显微形貌 × 200 (a) O₂/C₂H₂ 为 2.5; (b) O₂/C₂H₂ 为 1.5

Fig. 4 Microstructure of WC-12Co coatings in the condition of different value of O₂/C₂H₂ ratio

表 1 不同拉伸面积试样的结合强度 (试样锥度为 15 °) Table 1 Adhesion strengths of different pulling area (the angle of prick is 15 °)

试样编号	涂层厚度 h/m m	F 试样尺寸 r/mm	结合强度 ♂ M Pa	断面情况
A 1	0. 33	17. 96	65. 50	胶开
A 2	0.42	17. 76	63. 50	胶开
A 3	0. 37	17. 92	65. 35	胶开
A4	0. 29	17. 90	66. 54	胶开
A 5	0. 27	17. 88	78. 27	胶开
B1	0. 32	11. 96	75. 00	部分胶开
B2	0.40	11. 98	80. 50	部分胶开
В3	0. 28	11.76	61.00	胶开
В4	0. 28	11. 78	75. 60	胶开
В5	0. 27	12.00	76. 50	部分胶开
С 1	0.33	4. 90	73. 10	部分胶开
C 2	0. 34	4. 86	71. 30	部分胶开
С3	0. 29	4. 86	75. 05	部分胶开
C 4	0. 32	4. 80	72. 08	部分胶开
C 5	0. 26	4. 84	80.00	部分胶开
D1	0. 29	2.06	143. 90	涂层/基体开
D2	0. 28	1. 96	101.80	涂层/基体开
D3	0. 29	2. 02	123. 40	涂层/基体开
D4	0. 34	1. 96	113.00	涂层/基体开
D5	0. 37	2. 98	113. 40	涂层/基体开

断面尺寸条件下得到的拉伸强度。可以看出,断面尺寸为 12mm 和 18mm 时有胶开的现象,其原因如下: F_2 与半径呈线形变化,而 $\sigma_3 \times \pi^2$ 的值增加较快,导致 $\sigma_3 \times \pi^2 > > F_2$,此时获得的数值为 E-7 胶的抗拉强度。随着端面尺寸的减少到 2mm,涂层开裂逐渐从胶

开过渡到涂层与基体开, 说明 r_2 的值大于 2mm, 因此将断面尺寸 r 设计为 2mm 是合适的。

4 结论

- (1) 设计了一种新的测量方法用于测量爆炸喷涂涂层与基体的结合强度,该方法突破了传统方法中结合强度必须小于胶粘剂抗拉强度的限制。
- (2) 从理论上分析了这种方法拉伸面的临界尺寸,对国产喷枪尺寸设计为 2mm 左右是合适的,爆炸喷涂涂层与基体的结合强度最高可达 143M Pa。
- (3) 为避免喷涂过程中金属 C_0 的损失,爆炸气体中 C_2H_2 需要过量, O_2/C_2H_2 (摩尔比)为 1. 5 左右较合适。

参考文献

- [1] 米青田, 窦立军等. 爆炸喷涂碳化钨、碳化铬耐磨涂层质量检验[S]. HB 7627-1998.
- [2] 唐建新、张爱斌等.测量涂层结合强度的方法和用于测量的试样 [P].发明专利:00107205.6.
- [3] 唐建新, 张爱斌等. 爆炸喷涂工艺原理分析[J]. 材料工程, 2000 增刊: 40-43.

收稿日期: 2000-09-19; 修订日期: 2001-02-19

作者简介: 唐建新 (1968-), 男, 博士, 高级工程师, 主要从事表面防护, 爆炸喷涂方面的研究, 联系地址: 北京 81 信箱 15 分箱 (100095)。

本文编辑: 李海霞